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Abstract—One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured
CO2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process
is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including
visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of
complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical
properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material
permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making
novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using
synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed
algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.

Index Terms—Reeb graph, persistent homology, topological data analysis, geometric algorithms, segmentation, microscopy

1 INTRODUCTION

Over the past centuries, the atmospheric carbon dioxide concentration
has steadily increased. Since 1751, nearly 337 billion tons of CO2 pro-
duced by the combustion of fossil fuels and cement production were
emitted into the atmosphere [4]. The growing consensus is that these
increases in CO2 are disruptive to the earth’s climate, and that a re-
duction in atmospheric CO2 is necessary to avoid catastrophic effects
for the environment. While research in alternate energy production is
vital in finding new ways to generate energy without producing CO2,
a large amount of existing infrastructure and technology are tied to the
combustion of fossil fuels. Consequently, there is a need to remove
carbon after combustion processes and to store it for long periods of
time. One vehicle to this solution is carbon sequestration. By carbon
sequestration, we refer to the process of first capturing CO2 produced
by combustion and then storing it in underground rock formations via
subterranean injection.

The objective of the Energy Frontier Research Center (EFRC) for
Nanoscale Control of Geologic CO2 (NCGC) is to investigate the pro-
cesses that play a role in the geologic sequestration of carbon dioxide
in fluid-rock systems. Such investigations are necessary to ensure that
the technology developed for storing CO2 in deep subsurface rock for-
mations is safe and effective. To gain a better understanding of these
processes, researchers of the NCGC conduct experiments and perform
simulations that model the interaction of CO2 with rock systems, in-
vestigating processes in fluid-rock systems from the molecular scale
to the pore scale [17]. They generate large amounts of experimen-
tal data for different parameters—e.g., a variation of brine mixtures
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at different temperature and pressure values in porous media—while
keeping track of immiscible fluid structures, dissolution, and precipita-
tion [2, 3]. Numerical computer models calculate fluid-rock mechan-
ics at pore scales, infiltration stability and instabilities, and emergent
structures. Understanding these processes is key in describing the flow
and reactive transport of CO2-rich fluids in geologic reservoirs and to
develop approaches for controlling the flow of CO2 in reservoirs that
effectively and efficiently fill pore space with injected CO2. The EFRC
also utilizes the Advanced Light Source (ALS) at LBNL, particularly
its Beamline 8.3.2, for the tomographic imaging of fluid invasions of
3D porous materials, precipitation, and dissolution [2].

Our work, in collaboration with EFRC, includes analysis and visu-
alization of both experimental data and output of numerical simula-
tions. One area of particular interest is characterizing pore morphol-
ogy, a key material descriptor, which is useful for carbon sequestration
because porous media are present both in the subsurface as well as in
the prepared composites. While there are algorithms to estimate media
porosity and permeability from measured image data [5, 25, 3], these
algorithms make limited use of geometric information coming from
experiments using microtomography.

In this paper, we introduce a new approach to characterize porous
materials using extraction of pore networks and pockets by topolog-
ical algorithms. Our analysis framework uses a multi-stage pipeline
to extract information about pore networks from a sample. The input
consists of cross-sectional images resulting from high resolution X-
ray computed tomography (microCT). In the first step, we compute a
Boolean segmentation into material and void space from these slices.
This segmentation serves as the input to our topological analysis of
channels through the medium.

Porous media properties, such as permeability, can be measured in
different directions. In our application, the depth-direction is assumed:
we are interested in the flow through the material from top to bottom.
Taking advantage of this explicit orientation, we use a topological con-
struction, a Reeb graph, to describe the structure of the interstitial vol-
ume, i.e., void or pore space. To obtain a multiscale descriptor, our
algorithm finds pores with some minimum diameter. Specifically, fix-
ing a width threshold α , we restrict our view to the pores wide enough
to accommodate a sphere of radius α . Our graph describes the distinct
paths through the material such spheres can pervade. As we vary the
width threshold α , we obtain a family of graphs providing a multiscale
representation of channels through the medium.

Based on this family of graphs, we characterize the flow behav-
ior through the sample. For this purpose, we augment the edges of



each graph with their “widths,” analogous to approximating their ca-
pacity for carrying flow. By computing the maximum flow through
this graph, we obtain a single number that describes the flow behavior
through the pores of prescribed thickness.

The flow graph computation attributes a pervasiveness value to each
edge in the graph. Also, an edge with a large capacity can only carry
as much of the flow as its inlets and outlets support. In particular,
a dead-end edge with no outlets carries no flow, no matter what its
capacity. Thus, the graph augmented with this information describes
how much an individual channel contributes to the overall aggregate
flow through the pore network contained within a given material sam-
ple. This structure emphasizes significant properties by determining a
simplified pore network, represented by a graph with a subset of the
connected edges linking the source (top of the stack) to the sink (bot-
tom of the stack). Our contribution is to propose a descriptor to enable
a comparative analysis of materials by deriving measures from these
graphs, e.g., the maximum flow curve, with the advantage of being
relatively robust to small undulations on the object surface and often
incurring a lower computational cost [11] in comparison with graphs
obtained from a medial axis.

In order to illustrate the most prominent pore bodies of the material,
we detect pockets inside of the pore channels and represent them as
spheres that fit inside the channels. Each pocket is characterized by
two values: the radius of the sphere of maximum size, enclosed in
the pocket, and the maximum radius of a sphere that can pass through
the pocket. The pair of these values characterizes the prominence of a
pocket. Larger differences in radii signify more pronounced and thus,
more significant pockets.

To show that these geometric and topological descriptors enhance
our ability to estimate material permeability, we isolate microtomog-
raphy artifacts from our analysis. For this purpose, we run molec-
ular dynamics algorithms, as described by Skoge et al. [20], to ob-
tain numerical constructions of jammed packed bead beds, with iden-
tical and non-overlapping spheres. The synthetic data sets resemble a
monodispersive material and exhibit complex porous structure. Since
it is possible to calculate porosity and permeability for these synthetic
materials both analytically and numerically, these data sets serve as a
valuable benchmark and calibration of the proposed topological meth-
ods. Subsequently, we test our framework on real experimental data,
acquired using high-resolution, synchrotron-based X-ray microtomog-
raphy of glass beads during biomineralization.

We review previous work in porous media description, particularly
focusing on methods to extract pore networks in Sect. 2. In Sect. 3, we
describe both simulated materials and an experimental sample, which
are processed using software capabilities for segmenting microCT data
into dense material and void space, discussed in Sect. 4. After defin-
ing the interstitial volume, our algorithms extract topological struc-
tures, such as the Reeb graph, persistence diagrams, and maximum
flow (max-flow) curves, as detailed in Sect. 5. We illustrate our results
in Sect. 6 by visualizing detected structures, calculating porosity and
permeability of eleven different samples, and showing graphs display-
ing the permeability decay for homogeneous precipitation using max-
flow curves. We further explain how to use these curves to compare
materials at different stages of biomineralization. Finally, we conclude
our investigation with future developments of the proposed tools and
perspectives for a broader application of these new technologies.

2 BACKGROUND AND RELATED WORK

2.1 Porosity and Permeability of Materials
In the context of earth sciences, permeability is an important measure
that characterizes how much fluid can pass through a porous material.
Porosity—the percentage of void space in a material—is used in the
calculation of permeability as part of the Kozeny–Carman (KC) equa-
tion. KC is a permeability formulation stating that the flow is pro-
portional to the pressure drop and inversely proportional to the fluid
viscosity. According to the literature [25, 3], the KC relation provides
a poor fit for permeability data measured using a differential pressure
transducer, and pore geometry extracted from microCT data can im-
prove the accuracy of the permeability calculation.

While the estimation of permeability for porous media remains a
challenging issue from both theoretical and experimental points of
view [23], the permeability of beds of close packed spheres has been
extensively studied as one of the basic models of porous media. Par-
ticularly for monodispersed spheres, it is possible to calculate KC, as
described by Zaman et al. [25], as

κ = d2
θ

3/180(1−θ)2 , (1)

where κ is permeability, θ is porosity and d is the sphere diameter.
Other models include the Rumpf and Gupte models [25], whose for-
mulation is valid only for porosities ranging from 0.35 to 0.70. Our
synthetic data sets go beyond the validity of these models, therefore
we limit our calculations of Eq. 1 to calculate κ for simulated porous
materials and we establish a parallel between permeability and max-
flow curves through the use of topological networks as discussed in
Sect. 5.

2.2 Geometric Pore Space Characterization
Modern approaches to studying permeability focus on incorporating
pore-space geometry in derived measures. To this end, they charac-
terize pore geometry as a network of connected pockets (pore bodies).
To extract geometry, most existing techniques examine the medial axis
of the pores, i.e., the set of points inside the pores that do not have a
unique closest point on the material. In three-dimensional space, the
medial axis is a two-dimensional stratified space. Typically, models of
a material channel network are used to describe aggregate flow charac-
teristics, and thus, it becomes necessary to thin the medial axis into a
graph structure [16, 15, 19] describing the connectivity of pore space.
In contrast, the immediate output of our algorithm is a graph requiring
no such post-processing. Moreover, to distinguish between the chan-
nels of different widths, we construct a family of graphs which has
an immediate geometric interpretation. Similar to Jones and Ma [14],
we propose an exploratory visualization scheme to emphasize relevant
flow trajectories with applications to porous media. However, instead
of focusing on a locality-based visualization of interactions between
the geometry of solid structures and the flow trajectory, our method
aims to extract the pore network for estimating the fluid flow using
topological descriptors.

Silin and Patzek [19] study the connectivity of pockets—or pore
bodies—within the material, which they define, in different terms, as
the maxima of the distance function to the material; we use a similar
definition in Sect. 5. When studying pockets, the main challenge is
in pruning noisy maxima that do not reflect the features of the pore
space. This pruning is where our works diverge: they merge pockets
when their largest inscribed spheres overlap. On the other hand, we
rely on the theory of persistent homology [7] to distinguish between
significant and noisy pockets, letting the user make a decision about
significance from their distribution.

The representation in [19] relies on a stick-and-ball simplification
of the pore network, where spheres represent pockets (pore bodies)
and sticks signify pore throats that connect them. Both in their and
our representation the spheres have the same meaning. However, in-
stead of connecting pore bodies with straight line segments, we use
a Reeb graph as the representation of the network; we draw edges so
that they follow the centroids of the connected regions, corresponding
to the 3D interstitial space. We further augment edges of the Reeb
graph with capacity information (the cross-sectional area measured in
pixels). After computing maximum flow through the graph with re-
spect to these capacities, we eliminate edges that do not contribute to
the flow, thus eliminating dead ends and highlighting trajectories in
the material that are potentially involved in the flow.

Lindquist et al. [16] characterize porous material properties using
the medial axis. They compute the latter using a front-based approach
that starts “fires” at grain boundaries, propagates into voids and leaves
only pore voxels where fire arriving from opposite directions cancels
itself out. By labeling “fires” based on connected grains, and requir-
ing fires to have different labels for canceling each other out, their
approach eliminates irregularities in medial axis detection. Based on
the medial axis, the authors subsequently characterize the geometry of



pore space using (i) the “burn number” distribution, i.e., the distance
distribution of void voxels to the material; (ii) the volume distribution
of connected components of the medial axis; and (iii) tortuosity com-
puted as the length distribution of paths from one side of the sample to
the other. Their approach differs from ours in that they use the medial
axis for characterizing the pore space instead of the Reeb graph. Fur-
thermore, when computing properties such as connected components
and tortuosity, they treat each voxel of the medial axis as node in a
graph, leading to much larger graphs.

Building on this work, Lindquist [15] extracts the “backbone” of the
medial axis. His method subsequently uses the skeleton to detect pores
and to derive measures, such as a coordination number (degree) of the
vertices in the backbone and channel length. This work also introduces
three algorithms to grow the backbone into three-dimensional pores
and provides measures, such as area and volume.

Gyulassi et al. [9] extract filament structures in porous solids. The
goal is to characterize changes in a solid foam during the impact of
a projectile. For this purpose, they use the Morse–Smale complex to
compute a simplified representation of the distance field that removes
noise. They extract filament structure in the porous solid as a subset
of this complex. By defining a distance between graphs, they charac-
terize how much the foam changes due to the impact of a projectile.
While their method also considers porous materials and structures re-
lated to the medial axis, they are concerned with substantially different
properties of solids. Our approach also differs from theirs in that we
perform a quantitative analysis by associating a cross-sectional fila-
ment area with the edges of the Reeb graph computed from the three-
dimensional data set.

3 MATERIALS: PORE NETWORKS IN GEOLOGICAL FORMA-
TIONS

Potential subsurface regions that are candidates for carbon sequestra-
tion are retired wells. Reservoir rocks must be porous and permeable
to allow extraction of hydrocarbons, properties that are also necessary
for carbon injection and storage in the subsurface. Injection processes
must guarantee that CO2 remains in the subsurface, but the technology
still needs to be improved. At the EFRC, experiments are performed
using a variety of materials that influence carbon sequestration, such as
soil and rock samples from natural environments, and prepared com-
posites combined with microorganisms. These samples can be placed
in column vessels where temperature and pressure conditions can be
controlled to monitor the mechanical properties and the distribution of
CO2, and its viscosity, density, and surface tension with brine.

Monitoring the samples includes the measurement of the media
porosity, and permeability, among other characterizations of pore mor-
phology. For example, such descriptors are important to address
biomineralization, a natural subsurface process that can profoundly
alter the physical properties of porous materials. Biomineralization
refers to the synthesis of inorganic mineral-like materials by living
organisms through the combination of chemical elements and such
organisms in the same system. Bacteria can form inorganic crystals
either intracellularly or extracellularly [24], generating by-products,
such as the precipitation of calcium carbonate, as shown in Fig. 1.
Calcite is a mineral phase that can precipitate during subsurface reme-
diation or geotechnical engineering processes, with possible behavior
variations of the system, e.g., flow alteration and soil strengthening.
Research with microorganisms [3] showed that microbial precipita-
tion of CaCO3 strikingly reduced the permeability of porous media,
consequently affecting fluid flow and transport properties. This pa-
per describes tools to address pore description, illustrating our results
with microCT from experiments using porous material under biogenic
CaCO3 precipitation induced by Sporosarcina pasteurii [3], and syn-
thetic images that simulate porous media.

3.1 Porous media from microCT
MicroCT from porous media is obtained using high-resolution
synchrotron-based X-ray spectromicroscopy, which is a nondestruc-
tive technique for seeing inside solid objects. The process of imag-
ing the entire 3D rock sample involves acquiring projection views at

Fig. 1: MicroCT of porous media: (A) cross-section of glass bead col-
umn, inoculated with S. pausterii that promote calcite precipitation;
cross-section is input to our software Quant-CT, which outputs seg-
mented slices as in (B); rendering of the segmentation result for the
whole stack in (D) using VisIt; SEM image in (C) emphasizes the re-
sult of biomineralization, which clogs the void space, cementing the
pore channels.

several equally spaced angular positions, which after transformations
[12], turn into cross-sections of the object. Each voxel conveys infor-
mation about the X-ray attenuation and density of the scanned mate-
rial as a gray level value. MicroCT image stacks are often isotropic
with a pixel resolution at micrometer scale. They can be used to cre-
ate 3D virtual models that are useful in carbon sequestration research,
particularly in probing the structure of porous materials. Here, we de-
scribe microCT samples acquired at the ALS Beamline 8.3.2 [1] with
energies between 10 and 45keV, with a 1% bandpass, CCD camera
Cooke PCO 4000, Kodak chip with 4008×2672 pixels, 14 bit, 9 mi-
cron square pixels.

Fig. 1 illustrates results of calcite precipitation induced in a glass
bead-packed column in biogenic mixture, using the microbe S. pas-
teurii. The glass beads data set has dimensions 3337× 3337× 483
pixels, 4.49 µm resolution and a total of 10GB, originally, and the
core region corresponding to the inner part of the experimental vessel
is selected, with x-y dimensions of 1393×1398.

3.2 Porous media from simulation
Our synthetic test data consists of jammed packings of hard spheres,
generated using a molecular-dynamic code proposed by Skoge et
al. [20]. These codes enable a generation of bead beds inside a cylin-
drical container of a specified radius, here R = 200 pixels, with dif-
ferent packing ratios (media volume fraction), similar to the column
vessel used to enclose the samples before imaging, as described in
Sect. 3.1. We consider monodisperse spherical random packings of
n spheres, for n in [50,2000], and sphere diameters d in [20,94] pix-
els. These simulations are often used to understand the equilibrium
and dynamical properties of materials, such as simple fluids, colloids,
glasses, and granular media. Fig. 7a illustrates the result of simulating
a bead bed with packing equal to 10% comprised of 1,500 spheres with
a diameter equal to 20 voxels. We considered synthetic packs that are
both above and below the suspension limit, imitating grains in fluid or
rocks, respectively.

4 IMAGE ANALYSIS

Our computational analysis chain starts with synchrotron based X-ray
microCT cross-sectional images as input, which are the result of re-
constructed data using the filtered back projection algorithm [12]. The
slices represent the linear attenuation coefficient map of the scanned



object, compressed into different shades of gray, e.g., eight-bit inten-
sity images, often degrading the intensity variation. Other degrada-
tions may arise from the reconstruction, both intrinsic and extrinsic
artifacts.

Ushizima et al. [21, 22] describe a computational analysis workflow
for carbon sequestration research that includes image filtering, seg-
mentation, and feature detection and analysis. This pipeline includes
algorithms that analyze microCT data sets from soil samples, rocks,
glass beads and simulated data, representing jammed packing of glass
beads. They introduced and designed a new algorithm and software
framework, Quant-CT [21, 22], which processes and quantifies struc-
tures from cross-sections, and uses VisIt [6] to visualize results as il-
lustrated in Fig. 1 and Fig. 8a. The current algorithms can differentiate
porous media (high density material) from void (background, low den-
sity media) using a Boolean classifier, and extract features such as vol-
ume, surface area, granularity spectrum, porosity, and more recently,
permeability. Quant-CT supports quick user interaction, including the
ability for the user to train the algorithm via subsamples, and provide
its core algorithms with an automated parametrization [21]. As il-
lustrated in Fig. 1a, this method takes microCT slices as input to an
efficient greedy algorithm for statistical region merging (SRM) that
runs in linear time. This algorithm reduces image artifacts by filter-
ing sets of slices with a bilateral filter (BF). One of the challenges of
using BF is finding good parametrizations of the photometric and the
geometric kernels for anisotropic smoothing. Ushizima et al. showed
that one could calculate the photometric parameter as proportional to
the signal-to-noise ratio [21], aiming to minimize the issue of reflec-
tion over the large spectrum of X-ray attenuation values of the scanned
materials. This enables automated tuning of scale parameters, based
on statistics extracted from patches fed into the filtering algorithm by
the user. After image enhancement, they perform image segmentation
using SRM to identify two-phase volumes, dense material (e.g. rock,
beads) and void (pore volume). This improved algorithm leverages the
SRM ability to build a segmentation tree dependent on a scalar param-
eter, a.k.a. predicate, but originally tackles the oversegmentation issue
of SRM by using user-selected patch statistics to fuse regions into void
and solid phases. These tests illustrate that it can be applied to high-
resolution X-ray microtomography stacks up to tens of gigabytes in
size. This quantification has been used to support computational mod-
eling of the fluid dynamics into the pore space of the host object.

5 TOPOLOGY-BASED EXTRACTION OF POCKETS AND PORE
NETWORKS

To analyze the physical properties of the material we summarize the
geometry of its pore structure. The binary classification of the CT
stack of images gives us access to the necessary information in the
experimental data. Our goal is to both visualize the internal structure
and compare multiple materials. Since we can also extract the same
descriptors for the simulation data, we can compare physical and sim-
ulated materials. We study a pair of multiscalar geometric descriptors:
the first is an (augmented) graph reflecting the connectivity of the pore
network; the second is a diagram of “pockets” within the material.
Together they not only serve as a compact visual representation of
the material, but they also enable the computation of various derived
quantities as well as the identification of pore bodies.

Reeb graphs. We assume a given orientation of the porous medium
and use its height function h, similar to the computation proposed
in [11]. We consider a function h : X → R, defined on the three-
dimensional void space X of the material, that assigns to every point
its depth in the stack. Our analysis relies on Reeb graphs, which de-
scribe the topology of level sets of real-valued functions. Given the
function h, we say that two points x,y ∈ X are equivalent, x ∼ y, if
they belong to the same connected component of some level set. The
quotient space X/∼, called a Reeb graph of h, identifies all the equiv-
alent points together. Intuitively, it collapses connected components of
the level sets of the height function, and preserves their connectivity,
as illustrated in Fig. 2b.

As the illustration suggests in two dimensions, the Reeb graph

matches our intuition of the pore network in the material. But we
can capture even more information. To differentiate between chan-
nels of varying thickness we turn to an auxiliary construction. Let
M denote the space occupied by the material; let dM : X→ R be the
distance function to this space, dM(x) = infy∈M ‖x− y‖. We restrict
our attention to the α-superlevel set of dM , Mα = d−1

M [α,∞), which
is generically a three-manifold with boundary. This subset of the void
space has a simple geometric meaning: a point x belongs to the super-
level set Mα if a ball of radius α , centered at x, does not intersect the
material, B(x,α)∩M = /0. By increasing the threshold α , we restrict
our view to wider channels.

Already for small values of the threshold α , the empty space in
the slices of the CT scan becomes disconnected, introducing an inter-
esting topology that describes the pathways a particle of size α can
take through the material. We examine the Reeb graph by restricting
the height function to the superlevel set, h|Mα . Its branching structure
reflects the connectivity of the “wide pathways” in the material, see
Fig. 8c. In fact, we get a 1-parameter family of graphs that we can use
to describe the permeability, porosity, and other quantities of interest.

Reeb graph computation. The efficient computation of Reeb graphs
is an active research topic. Until recently, the fastest algorithm was a
randomized approach due to Harvey et al. [10], running in expected
time O(m logm). Parsa [18] has recently reported on an optimal deter-
ministic algorithm, which always runs in time O(m logm), where m is
the number of edges in the domain. In our case, the data has a special
property: the depth function h, whose Reeb graph we want to com-
pute, is aligned with one of the coordinate axes—we take advantage
of this structure in our computation.

To compute the Reeb graph, it suffices to identify the connected
components of the superlevel set Mα of the distance function, re-
stricted to each slice in the stack. A depth-first search in each slice
performs this labeling in linear time. Subsequently, we identify which
components at level z in the stack are adjacent to which components at
level z+1, as illustrated in Fig. 3a. A traversal of the points at a given
level identifies all such connections—the edges of the Reeb graph—in
linear time. This axis-aligned structure presents one more advantage:
the computation of the Reeb graph is completely parallel—all slices
are treated independently.

Maximum flow. To illustrate the utility of a graph representation of
the porous material, we employ the Reeb graph as the input to a max-
flow computation. Each vertex in the Reeb graph corresponds to a
connected component in the level set of the height function. Every
edge connects two such components together. We map the two com-
ponents into the same plane (from the two planes vertically consecu-
tive in the stack) and find their intersection. We assign the area of this
intersection as the capacity to the edge; see Fig. 3a.

Once we extract the capacities of all the edges, we add two auxiliary
vertices: a source vertex connected to all the components of the top
slice and a sink vertex connected to all the components of the bottom
slice. We use the Ford–Fulkerson algorithm [8] to find the max-flow
from the source to the sink. By definition, this quantity expresses how
much flow can travel across the graph without exceeding the edge ca-
pacities and conserving the flow on the vertices, i.e., the outflow of any
vertex is the same as its inflow. We view this measure as a nuanced
description of the geometry of the material: unlike porosity, which
only measures the percentage of the empty space, max-flow accounts
for what space is reachable in the material. Particularly interesting is
the assignment of the flow to individual edges in the solution to the
max-flow problem; see Fig. 3b. First, it eliminates the dead branches
that do not connect the top to the bottom of the material; this pruning
is especially helpful when visualizing the graph. Second, it highlights
the bottlenecks in the network, the edges that are saturated to their full
capacity.

Our ability to examine Reeb graphs at different superlevel sets of
the distance function provides us with a multiscalar view of the flow
through the material, reflecting its complicated geometry. As we in-
crease the threshold α of the distance function, the material thick-
ens and the pores shrink. Therefore, the maximum flow decreases
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Fig. 2: A two-dimensional illustration of the constructions of a Reeb graph, wide pathways, and a pocket. We stress that the figure is two-
dimensional only for clarity of the illustration; all the constructions involved in our computation happen in three dimensions. (a) A schematic
porous material in pink, with the void region in white. (b) Reeb graph of the height function h, restricted to the wide pathways Mα . The dark
blue components in a level set of the function collapse to single points in the Reeb graph. (c) Wide pathways, shaded in gray, are a superlevel
set Mα of the distance function, dM , to the material. (d) A pocket of persistence l− s in green. The largest sphere that fits inside has radius l,
while the largest sphere that can escape has radius s.
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(b) Flow graph

Fig. 3: Schemas of the edge capacities and Reeb graph calculations. (a) Three components (shaded in pink) in two consecutive slices of the
stack are represented by three vertices and two edges in the Reeb graph. The capacity assigned to the edges is calculated as the area of the
intersection of the respective components, shaded in green in the lower slice. Accordingly, the left edge is assigned capacity x; the right edge is
assigned capacity y. (b) Full Reeb graph with dead-ends and a detected subgraph that carries the maximum flow, highlighted in the thicker line.

as illustrated in Fig. 4. One interpretation of the resulting graphs is
particularly convenient for our application. The graphs tell us how
much flow the material carries after homogeneous precipitation, which
evenly clogs the pores.

Persistent pockets. To refine our representation of the porous mate-
rial, we augment the Reeb graph with significant pockets, where the
liquid can accumulate. We use the theory of persistent homology [7]
to detect such pockets and quantify their significance.

The distance function dM , once again, supplies the necessary in-
formation. We track the connected components in its superlevel sets
as we decrease the defining threshold α . As we decrease α from in-
finity to zero, whenever it equals the value of a local maximum of
the function dM , a new component appears in the superlevel set Mα .
We assign this value to the component, and say that it is born at α .
Occasionally, as our threshold passes values of certain saddles, such
components merge. When two components born at α1 and α2 merge
at αs, with αs ≤ α1 ≤ α2, we say that the younger component merged
into the older one, and pair α1 and αs. Once we sweep α from infinity
to zero, all maxima, except for the global one, become paired to sad-
dles. Thus, we obtain a collection of pairs (si, li)i, each representing a
pocket in the material. The difference li− si is the persistence of the
pocket, centered at the maximum at distance li from M.

A simple geometric intuition justifies our language. The material
has a pocket with parameters (s, l) if the largest empty sphere that fits
inside has radius l, while the largest sphere that can escape has radius

Data set Porosity Permeability (pel2) Slope
d36.n1500 0.42 1.68 -14,019.40
d41.n1000 0.44 2.44 -13,569.20
d32.n1500 0.6 7.53 -12,677.86
d26.n2000 0.71 16.14 -12,151.36
d27.n1500 0.76 29.46 -10,532.90
d20.n1500 0.9 166.83 -8,039.12
d29.n500 0.9 334.14 -5,848.84
d88.n100 0.45 13.61 -4,608.08
d94.n80 0.46 17.35 -3,539.35
d29.n50 0.99 43,929.40 -2,166.34

Table 1: Porosity, permeability, and slope of tangent to max-flow
curves, calculated for synthetic data sets used in Fig.4.

s; see Fig. 2d. The larger the difference l − s between these radii,
the more pronounced the pocket. By plotting all the pairs (s, l) in the
plane, with s as the abscissa and l as the ordinate of the point, we get a
persistence diagram, see Fig. 6; points further away from the diagonal
represent more persistent pockets. The diagram serves as a summary
of material properties: it highlights significant scales, shows all the
pockets at once, and enables a comparison of multiple materials.



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  10  20  30  40  50  60  70

M
ax

 f
lo

w

Distance function offset

d20-n1500
d26-n2000
d41-n1000
d36-n1500

d94-n80
d88-n100
d29-n50

d29-n500
d32-n1500
d27-n1500

(a) Linear

(b) Logarithmic

Fig. 4: Maximum flow for synthetic materials, for different sphere di-
ameters and packing, as we increase threshold α of the distance func-
tion.

6 RESULTS

We computed porous material descriptors, using Reeb graphs and per-
sistence diagrams to extract pore network, max-flow curves and pock-
ets. We tested these algorithms using different materials. In total,
we considered ten synthetic bead beds and one experimental microCT
data set of borossilicate beads of approximately 1mm, coated with bio-
precipitates. The goals of this analysis were: (i) to demonstrate that
max-flow curves, extracted from Reeb graphs support a broader, mul-
tiscale description of the flow throughout the material as opposed to
single scalars as porosity and permeability (Figs. 4 and 5); (ii) to en-
able a comparison of different materials regarding interstitial space
(Fig. 4); (iii) to model homogeneous precipitation on clean bead packs
to better understand biomineralization in real experiments (Table 1);
(iv) to compare our findings with standard representations as porosity-
permeability curves (Fig. 5); and (v) to visualize the pore network and
pockets (pore bodies) from simulated materials (Fig. 7) and microto-
mography of beads injected with microorganisms that induce biopre-
cipitation (Fig. 8).

Fig. 4 shows maximum flow curves for the synthetic samples with
different granularity and porosity. Both linear and logarithmic rep-

Fig. 5: Porosity-permeability curves for material comparison: each
curve corresponds to samples with the same number of beads, with a
decreasing sphere diameter, i.e., increasing permeability/porosity.

resentations are shown to emphasize differences between curves and
facilitate an interpretation of the slopes. The last column of Table 1
shows the slope calculated for each curve in Fig. 4. On the horizontal
axis of Fig. 4, the lower the distance function offset value, the wider
the void space of the sample. Higher values of the distance function
offset are analogous to higher levels of precipitation in a particular
sample. Each curve is drawn using a different color and symbol, and
labeled according to the diameter (d) of the bead, followed by number
(n) of beads. The curve d29.n50 corresponds to beads with d = 29,
n = 50, with a higher permeability due to the low packing (1%), and
therefore, a high porosity (99%) and a larger amount of void space
in comparison to the other samples. In comparing curves of different
materials, the fluid flow of a sample decayed slower for materials with
high porosity, which was expected. However, the comparison between
materials with similar porosity and adverse permeabilities can be less
obvious—e.g., samples d29.n50 and d29.n500. Particularly in these
cases, the max-flow curves can quickly illustrate how the channel net-
work would be affected by narrowing processes as precipitation.

As a rule of thumb, we can calculate linear regressions on these
curves, focusing on the values before the max-flow function assymp-
totically approaches zero. In general, we observed that the slope of
the straight line, obtained via linear regression, will be higher for ma-
terials with higher permeability. Also, the granularity is reflected on
the slope, as illustrated in the differences between curves d36.n1500
and d41.n1000. When considering samples with similar coarseness,
as d26.n2000 and d27.n1500, the sample with a higher porosity will
present a higher slope.

As expected, the number of particles and the sphere diameter influ-
ence both porosity and permeability as illustrated in Fig. 5 and Table 1.
Fig. 5 includes more data sets (with a total of 35 simulated bead beds)
than in Fig. 4 for better visualization of the porosity-permeability rela-
tionship, when increasing the spheres diameter, but keeping the same
number of spheres. Similar to the experiments performed by Zaman
[25], we found that porosity and permeability are directly proportional,
according to the considered simulated data. The porosity-permeability
curve is a standard representation, but it can be confusing in compar-
isons of materials with different properties, as illustrated in Table 1,
where materials with similar porosity can exhibit a very different per-
meability.

Fig. 7 shows the visualization of a synthetic material, simulated us-



(a) Packed spheres (b) Highlighting “pocket spheres” (c) Pocket boundary of the circled orange sphere
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Fig. 7: Visualization of pockets in synthetic packed sphere data set comprising a cylinder packed with n = 1500 spheres of constant radius
r = 20 pixels. (a) Showing only the packed spheres: notice how difficult it is to estimate the size of the empty space between particles. (b)
Representing pockets as spheres with the largest radius of a sphere fitting into the pocket highlights the empty space between spheres. Sphere
color corresponds to size using a modified rainbow color map. (c), (d), (e) Boundary of the pocket corresponding to the circled orange pocket
sphere. (f), (g), (h), (i) Boundary of the circled yellow pocket sphere in the interior.

ing 1500 spheres, where each sphere has a radius of 20 pixels. Fig. 7a
shows only the packed spheres in the cylinder. It is difficult to perceive
the size of the voids between them or whether there are any voids at
all. To get an overview of their structure, Fig. 6 shows the persistence
diagram that summarizes the distribution of the pockets in this data
set. Points represent individual pockets. The ordinate l represents the
largest sphere that fits inside a pocket. Consequently, the vertical po-
sition of the points shows the size of the void space. The further the
points are shifted upwards, the larger the voids or pockets in the solid.
The abscissa s represents the size of the largest sphere that can escape
from the pocket. It characterizes the size of the largest throat leading
out of a pocket. The distance of a point to the diagonal, l−s, expresses
the prominence of a pocket. Both the persistence diagram and Fig. 7
show pockets of persistence at least five pixels to prune topological
noise.

To highlight the geometry of the pockets, Fig. 7b shows “pocket
spheres,” i.e., the largest sphere that fits into an individually detected
void between the packed spheres. Visualizing these spheres, colored
according to their radius, already gives an impression of the size of

the free space between spheres. The main goal in coloring spheres is
being able to distinguish between them and make it possible to deter-
mine whether two spheres have similar sizes. For this purpose, we
use a modified rainbow color map to assign colors. To obtain more
information about pockets, we show the detected pocket boundaries
for the pockets corresponding to the two spheres circled by white in
Fig. 7b. The motivation to show both the orange and yellow pockets
is to inspect the differences between pockets adjacent to the cylindri-
cal container vessel (in orange), where the simulation of homogenous
precipitation is different from internal pockets (in yellow), which also
tend to be larger than the more external pockets.

Fig. 7c shows the boundaries of the pocket corresponding to the cir-
cled orange sphere close to the cylinder containing the packed spheres.
To better discern its boundaries, we hide the pocket spheres and re-
strict display to all packed spheres within a certain distance from its
centroid in Fig. 7d and provide a close-up view in Fig. 7e. We can
clearly see the outlines of the detected void. Fig. 7f shows the bound-
ary of the pocket corresponding to the circled yellow sphere in the
interior. While it is significantly larger than the orange pocket, Fig. 7g
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Fig. 6: Persistence diagram showing the distribution of the pockets
visualized in Fig. 7. Each pocket is represented by a point, where the
ordinate l represents the radius of the largest sphere that fits inside,
and the abscissa s, the radius of the largest sphere that can escape.
Both are measured in pixels. The line corresponds to zero persistence.
The larger the distance of a point to the line, the more pronounced its
corresponding pocket.

illustrates that it is obscured by the packed spheres, even if we hide
the pocket spheres. Fig. 7h shows a view where all packed spheres
further away than a specified radius from the centroid are removed,
and Fig. 7i shows a close-up view of this pocket. It is clearly visible
that there are large regions of empty space between the spheres and
that pockets correspond to connected regions between the spheres.

Fig. 8 shows the results of our analysis for a data set of calcite pre-
cipitation induced by a biogenic mixture. Fig. 8a shows the result
of segmenting the imaging data into material (gray) and void space
(empty). To analyze the flow through the sample, we show the flow
graph along with the sample in Fig. 8b, to illustrate that the maximum
flow coincides with voids in the segmentation. To analyze the flow
behavior further, we only show a cylindrical cut through the segmen-
tation along with the flow graph (Figs. 8c through 8f). Figs. 8c and
8d show a cylindrical cut through the material that corresponds to a
region of large flow through the sample. The first figure also shows
pocket spheres around the cylindrical cut to illustrate where pockets in
the sample are detected. The flow through the sample coincides with
the voids in the material. Figs. 8e and 8f examine why other regions
in the sample show no contribution to the flow graph. The cylindrical
cut is blocked by small deposits that fill most of the voids. These de-
posits correspond to calcite precipitation produced by the microbes (S.
pasteurii ) in the experiment.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented topological descriptors, customized to
the problem of characterizing both synthetic materials from 3D sim-
ulations of packed spheres and 3D high-resolution microtomography.
We have proposed a new descriptor of homogeneous deposition on
porous materials, and its obstruction effect on interstitial space, given
different slopes obtained from linear regression on the maximum flow
curves. The main advantages of our approach is the combination of

image-processing, topological analysis, multiscale approaches and vi-
sualization aimed at gaining a deeper understanding of pore structures,
illustrating results using both experimental and synthetic data sets. We
introduced the use of max-flow slopes as a descriptor to a enable com-
parison between materials with different porosity and permeability
values, that will exhibit adverse behaviour during precipitation, which
could not be predicted by using only porosity-permeability curves.

The visualization of pore bodies helps domain scientists developing
an intuition regarding fluid storage. It also facilitates the identification
of similar pockets, which correspond to spheres with alike colors. On
the other hand, the max-flow curves and their slopes support a compar-
ison of materials with a different fluid flow potential. In addition, the
max-flow curves can indicate permeability decay when the pore net-
work is subjected to depositing, and consequently, pore clogging. We
simulated a homogeneous deposition by considering different offsets
of the distance function. These results are relevant to carbon seques-
tration research because bioprecipitation can accumulate and block the
network. Therefore, bioprecipitation could be helpful in trapping CO2
in the subsurface; this paper lays out initial work in quantifying depo-
sition in porous materials. The current tools for topological descriptor
extraction and the visualization of pore networks and pore bodies are
prototypes to be deployed in material science research. Our approach
to data representation is a key step in extracting estimates to be used as
statistical descriptors, e.g., the distributions of pore bodies conditioned
to pore throats.

Moving forward, we will compute these topological descriptors for
more samples acquired by microCT and study in detail how they il-
lustrate differences between materials. We will also apply these tech-
niques to numerical simulation data, with the aim of comparing nu-
merical simulation results to physical experiments. Finally, we will
re-examine related work and perform more detailed comparisons of
derived descriptors. In particular, we are interested in deriving proper-
ties, such as the pore throats (as in [19]) from our representation, with
the advantage of not requiring preprocessing as the removal of redun-
dant “ribs.” In our current representation, we only represent the largest
throat explicitly, but having information about all pore throats would
enhance the expressiveness of our method. Other investigations might
include fluid flow numerical methods to solve the Navier Stokes [13]
equations considering concise representations of the pore network.

Future efforts will focus on computing up-scaled continuum proper-
ties (e.g., single phase permeability, capillary pressure curves, relative
permeability for CO2/brine systems, effective diffusivity, dispersivity)
from our microstructural representation, so we can address the impact
of geometries to geological carbon sequestration. Such tools will en-
able a prediction of large scale behavior of plumes from small samples
of rocks taken from deep underground—microstructure can provide
insight (and hopefully quantitative estimates) of the key parameters
(and parameter relationships) needed for those models. Before CO2 is
injected at a site, extensive multiphase flow modeling is performed to
model how the plume will evolve with time; usually these modeling
exercises are far from truly predictive and one reason is the paucity
of data available to describe the transport properties. Since core flood
experiments (the way to actually measure some of these values) are
time-consuming, expensive, they require large samples, and they are
hard to repeat, pore-scale imaging of small samples and subsequent
modeling could be one way of obtaining a wide variety of property
estimates for input into larger scale simulations.
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