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Abstract—Because of the speed and data rates of time-resolved
experiments at facilities such as synchrotron beamlines, automa-
tion is critical during time-resolved experiments. In 3D imaging
experiments like microCT (µCT), this includes recognizing fea-
tures of interest and “zooming in” spatially and temporally to
those features; ideally without requiring advanced information
about which features are being imaged. Digital Volume Corre-
lation (DVC) can achieve this by measuring the deformation
field between images, but has not been used during autonomous
experiments because of the scalability of the codes. In this work,
we propose a model for global DVC and a parallel algorithm
for solving it for large-scale images, suitable for giving feed-
back for autonomous experiments at synchrotron-based microCT
beamlines. In particular, we leverage recent advancements in
entropy-regularized optimal transport to develop efficient, simple-
to-implement, parallel algorithms which scale linearly (O(N))
in space and time, where N is the number of voxels, and well
with an increasing number of processors. As a demonstration, we
compute the deformation field for every voxel from a µCT volume
with dimensions 2560x2560x2160. We discuss implementation
details, drawbacks and future directions.

I. INTRODUCTION

MicroCT (µCT) data collection has been used to study
carbon fibers [1], [2], ceramic matrix composites [3], [4],
batteries, bones, and many other materials [5], in many cases
while subjecting materials to conditions of interest, such as
high temperature, pressure, and mechanical loads. But there
is a growing gap between the rate at which one can acquire
volumetric µCT data, which is on the order of seconds to
minutes, and the efficiency of algorithms for image analysis.
Planned instrument upgrades will lead facilities to produce
terabytes of image-based data per second, further enlarging
this gap. This is especially problematic because increasingly,
it is desirable to run time-resolved experiments autonomously,
adjusting the spatial and temporal sampling rate as well as the
location being imaged to collect data on the most relevant and
interesting parts of the sample which show changes during the
experiment.

An algorithm that could span the wide range of samples
that are studied and be a key part of autonomous experiments
is one that would determine the displacement field [6]. In
studying µCT images, this problem is generally referred to
as Digital Volume Correlation (DVC). Although the method

has applications to several other areas, DVC is highly relevant
to mechanical testing of materials. When mechanical loads
are applied to a material (tension, compression, torsion, etc),
the resulting deformation field provides a direct, spatially
resolved measurement of important features that contribute
to structural behavior, such as failure localization, areas of
stress concentration, and bulk properties under load [6].

In current scientific workflows, DVC is used off-line,
after an experiment has taken place. The main reason is
computational complexity. Determining the displacement field
is a challenging optimization problem, and even simplified
iterative algorithms are non-trivial to implement for datasets
produced by synchrotron beamlines.

The main contribution of this paper is an optimal transport
model of global DVC and an efficient, parallel algorithm for
solving it. The key observation is that global DVC is equivalent
to an optimal transport image registration problem [7], and
recently proposed approximate solvers [8] can scale to full-
resolution datasets. This work is a step in the direction of
generalized autonomous experiments for µCT that can “zoom
in” spatially and temporally on regions of interest during an
experiment.

The paper is organized as follows. Section II reviews the
DVC problem and discusses local and global computational
approaches. Section III provides background on Optimal
Transport and its application to DVC. Section IV provides
background on Entropy-Regularized Optimal Transport and
describes algorithms for solving it. Section V describes
implementation details. Section VI describes the dataset we
use and its acquisition. Section VII presents our results on
experiments involving synthetic and real data. We conclude
and discuss drawbacks and future directions in Section VIII.

II. PROBLEM FORMULATION AND RELATED WORK

We consider a mass of material captured by an image, called
the target image, and denote this as f(x), where x is a position
in R3. A second image (called the reference image) contains
the same mass of material, however the material has now
been deformed, and the density is distributed according to
some new function g(x). Digital Volume Correlation algorithms
compute a vector field φ : R3 → R3, called the displacement
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field, which deforms the reference image into the target image.
Mathematically, it is the solution to the following optimization
problem [6],

minS(f, g(φ)) +R(φ) (1)

where S is a measure of similarity between the target image
f(x) and the transformed image, g(φ(x)), and R(φ) is a
regularization term. There are many choices for similarity
measures and regularizations; see [9], [6], [10], and an extensive
review is available in Buljac et al [6].

Two approaches have emerged within the DVC community:
local, which were originally proposed, and global, which are
more recent refinements. Each approach and the opportunities
for parallelism are outlined in the next subsections.

A. Local Approaches

Local approaches describe a set of algorithms to DVC which
approximately solve Equation (1), processing local subvolumes
independently. The main idea is as follows. A subvolume
in the reference image, centered at a point xi with window
size w and volume w3, is extracted. For this subvolume, the
best fitting affine transformation to the target subvolume, in
some neighbourhood of xi, is computed. The resulting affine
transformation is used for the deformation φ(x) at xi.

This approach is particularly amenable to parallelism as each
subvolume can be handled independently. For this reason, to
the best of our knowledge, this is the only approach which has
been used for DVC on HPC systems [11], [12]. However, local
approaches do not account for assignments of neighbouring
subvolumes, and this can lead to ambiguous assignments.
This shortcoming, and several other drawbacks, have been
documented elsewhere, and we refer the reader in particular
to [13], [6].

B. Global Approaches

Global approaches to DVC, and the subject of this work, look
to find a continuous φ : R3 → R3, which approximately solves
Equation (1) over the entire image volume [14]. This is closely
related to image registration algorithms from image processing
and applied mathematics, and more faithfully constructs the
deformation field [6]. However, global approaches are difficult
to scale. A general approach is as follows. The vector field is
expanded in a set of basis functions, which transforms Equation
(1) into a nonlinear least-squares problem. Note this problem
is not necessarily convex, and so only local minima can be
expected. The nonlinear system is then handled using a Gauss-
Newton solver [13], which can give a high-order accuracy.
These nonlinear least squares solvers, in comparison to the
local DVC approach, are non-trivial to parallelize [15].

III. OPTIMAL TRANSPORT MODEL

The model we adopt for DVC is derived from optimal
transport, which is a particularly rich mathematical area and
whose application to image registration has been explored
before [7], [16]. Considering each voxel as having a particular
amount of mass, let Pi,j be a matrix which dictates the amount
of mass from voxel xi from the target image f(x) to be

distributed to yj in the reference image g(y). This table is
called the mass transportation plan [8], [7]. The cost of moving
some mass is set as the amount of mass moved, multiplied by
the distance squared that it travelled, or Ci,j = Pi,j ||xi− yj ||22.
Determining the minimum cost plan that moves all mass from
f(x) to g(y) then solves the linear program.

min
P∈U(f,g)

∑
i,j

Pi,j ||xi − yj ||22. (2)

U(f, g) = {U ∈ R+
NxN | U1 = f, UT1 = g}. (3)

A deformation map can then be defined by taking the weighted
average point [8]

φ(xi) =
∑
j

Pi,jyj/f(xi). (4)

Note in particular this model has been explored in image
warping and registration by Haker et al. [7], and enjoys several
favorable qualities. There is a unique global minimum, and it
is parameter free [7].

The drawback of this approach is that, naively, the memory
footprint of Pi,j requires O(N2) entries, where N is the
number of voxels. For volumetric µCT images, with billions
of voxels, this would require a large amount of memory, in
the exabyte range. In practice, the resulting transportation plan
is sparse, and requires much less memory than this, however
determining the support a-priori is a challenge [17]. Haker et al.
[7] cite this as the reason for avoiding the linear programming
solution in the first place, motivating a partial differential
equations approach. However, recent algorithms are available to
approximate (2), which are substantially simpler to implement
and parallelize [8]. We provide details in the next section.

IV. ALGORITHM DESCRIPTION

While there are several efficient approaches to solving the
optimal transport problem (see [18] for a recent review), we
focus on the entropy-regularized optimal transport proposed
by Cuturi [19] because of the opportunities for parallelism.
Other possibilities which provide excellent efficiency include
the Auction Algorithm [20], Dual Descent [21], a multiscale
approach [22], as well as recent results in linear programming
[23]. However, as shown in the next section, the entropic
regularization approach admits an efficient algorithm which is
simple to parallelize. This approach has recently been used in
the medical imaging community for diffeomorphic registration
[16] and in several other fields including computer graphics
and machine learning [24], [17]. It describes an algorithm
for approximating the transport plan Pi,j in O(N) space and
O(N logN) operations. The operations are improved to O(N)
in the implementation section.

A. Entropic Regularization

The main idea behind the method is to find approximate
solutions to the linear optimal transport program by regularizing
with an entropy term H(P ) defined as

H(P ) = −
∑
i,j

Pi,j
(
log(Pi,j)− 1

)
(5)
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Adding this to our linear program, the approximation, which
we denote Pσ , satisfies

P ∗σ = minP∈U(f,g)〈P,D〉 − σ2H(P ). (6)

Note this regularization now enforces the positivity of P , and
so the positivity constraint can be relaxed.

While this problem initially looks more challenging there
is a particularly nice form of the solution. One can show that
Pσ decomposes into the following product [19]

Pσ = diag(u)Kσdiag(v), (7)

where
• u and v are called scaling vectors and reside in Rn;
• Kσ = exp(−||xi − yj ||22/σ2).
We note that in this formulation matrix Kσ has a closed

form, and we don’t need to store it explicitly. Instead we
require space for the scaling vectors u and v, reducing memory
consumption to O(2N) from O(N2) in the original linear
program. This is a dramatic savings in the case of images.

B. Sinkhorn’s Algorithm

It still remains to determine the unknown scaling vectors u
and v to find the approximate optimal transport plan. Following
Cuturi [19], we substitute the expression for Pσ from (7) into
the linear constraints in (3) to get

u�Kσv = f, v �Kσu = g. (8)

Here, � is element-wise multiplication, and Kσu is a matrix-
vector product. Moreover, multiplication by Kσ is a Gaussian
convolution and can be computed in O(N logN) time instead
of O(N2).

To find a solution (u, v), Sinkhorn’s algorithm iterates
between updating u and v as follows. Initiate the algorithm
with u0 = v0 and repeat the following until convergence

uk = ρo � (Kσv
k−1), vk = ρ1 � (Kσu

k). (9)

Here, � is element-wise division. Therefore, an approximation
to the optimal transport plan Pσ can be found by performing
Gaussian convolution and element-wise division, each of which
can be performed in O(N logN) operations.

V. IMPLEMENTATION

In this section we provide the details of our implementation
of Sinkhorn’s algorithm for large scientific images.

A. Block Parallel Processing

Our distributed implementation of Sinkhorn’s algorithm is
done using the block parallel data analysis library DIY [25],
which follows the bulk synchronous parallel (BSP) model of
computation. The main abstraction in DIY is a block, which is
an indivisible unit of data, defined by the user. Operations
are performed on each block in parallel, interleaved with
communication phases between neighbouring blocks.

Blocks for our application are subvolumes with ghost zones
set to the half-width of the Gaussian convolution, as detailed in

the next subsection. The image is decomposed into the number
of subvolumes equal to the number of available processors.

Each iteration of Sinkhorn’s algorithm is straightforward to
implement using DIY. Gaussian convolution is performed over
each block in parallel. Afterwards, the needed overlap from
neighbouring block ghost zones is exchanged. The element-
wise division is then done in parallel with a similar neighbour
exchange, and the process is repeated until convergence.

B. Gaussian Convolution

Operating on blocks we have chosen makes performing
Gaussian Convolution using a distributed Discrete Cosine
Transform (DCT) challenging. This poses an issue for large
deformations, where we need to perform Gaussian convolution
over a wide window. Applying the Gaussian kernel directly,
with a truncated window, leads to an implementation which
scales as O(w3N). Even for modestly sized windows (which
are proportionate to expected deformation sizes) this can be
prohibitively costly.

Fortunately, there are several Gaussian convolution algo-
rithms which are constant in the window size. For a thorough
treatment of these we refer the reader to the excellent survey by
Greteuer [26]. Of the available options, we chose the extended
Box Car filter approximation. This introduces a small error, as
it approximates the Gaussian kernel rather than implementing
it exactly. However, in our validation results, we did not find
this to be significant.

C. Numerical Instability

A known issue with Sinkhorn’s algorithm is that for small
values of σ, the values of Kσu can become very small, leading
to numerical instability and overflow [8], [27]. One solution
is to use log domain iterations to offset this [8], however we
found this did not make an improvement in stability for our
experiments. Chizat et al. propose to use solutions for larger
values of σ, which are easier to obtain, as initial solutions for
smaller values of σ [28]. We call the largest value of σ, σM
and the smallest σm. The largest scale has the interpretation
of the largest expected deformation, while the smallest scale
can be interpreted as the finest observable features.

D. Monitoring Convergence

Monitoring convergence of Sinkhorn’s algorithm, particularly
for images, is not a straightforward process; it depends on the
distribution of pixel values as well as initial scaling.

For this work, we assume the image has been quantized to
[0, 255] and stored as an unsigned 8-bit integer. We scale the
image so that pixel values belong to [0, 1] and add a small
number, 10−4, so as to avoid dividing by zero. Error is then
measured by the relative residual

r = ||u ·Kv − f ||1/||f ||1 (10)

and the program is terminated if this falls below 0.02. In
practice, this condition is satisfied when the difference in the
produced output is less than 2% of the mean value of the input,
which appears to be comparable to previous work [13].
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Fig. 1: Example slices of synthetically generated images. Left: Target
Synthetic Image. Right: Reference Synthetic Image. Created by using
the unloaded and loaded images as scaling vectors in 8. Note each is
similar, however fine details in the reference image have been diffused
in the target image.

VI. DATA DESCRIPTION

The dataset we used consists of two µCT images of L-
Chondrite meteorite samples subjected to mechanical compres-
sion. The first is an unloaded sample and the second has been
compressed by 400µm with a load of 750N . The dimensions
of each image are 2560×2560×x2160 voxels. A more detailed
description of the samples and data acquisition is provided
below.

The images were collected as part of an in-situ µCT
campaign conducted at the beamline 8.3.2 at the Advanced
Light Source (ALS) at Lawrence Berkeley National Laboratory.
The campaign gathered data in support of the NASA Asteroid
Threat Assessment Project (ATAP). As part of ATAP, the
internal structure of chondrite meteorites was characterized
using µCT and samples were tested under mechanical loads to
understand their failure mechanisms. L-type ordinary chondrites
are the second most common group of meteorites, and exhibit a
low iron content compared to H-chondrites. The experimental
setup includes a mechanical testing chamber with a motor
driven system to deliver up to 2000 N of compression load. The
chamber also features a 1-cm-tall, 0.5-mm-thick axis-symmetric
X-ray transmissive window that allows X-ray imaging while
applying load to the sample. An L-chondrite sample was
subjected to increasing compression loads by applying displace-
ments of 20 µm, alternated by tomography scans under static
conditions. Scans were acquired using polychromatic X-rays,
5× magnification Mitutoyo lens, 50 µm LuAG scintillator, and
a 2,560×2,160 pixel sCMOS sensor (pco.EDGE), by collecting
1,025 radiographs over 180◦ rotation, with an exposure time
of 400 ms. We obtained scans of 2,560×2,560×2,160 voxels,
with a pixel size of 1.25 µm. For the present analysis we
tested scaling of our algorithm on the entire 3D volume of the
datasets collected at 0 µm (unloaded) and 400 µm displacement
(≈750 N).

VII. RESULTS

We present results from two sets of experiments. The first,
aimed at verifying the accuracy of Sinkhorns algorithm, is on
a synthetic dataset. This set of results was run on a custom
workstation, where the entire problem fit into memory. The
second are from a large, real dataset, which did not fit into

memory. This set of results used a distributed supercomputing
system Cori. A description of the hardware is provided in the
next subsection, and results presented in the subsequent two.

A. Hardware Platforms

Accuracy tests on the synthetic dataset were performed on a
custom workstation with 16 Intel Xeon Gold 5122, 3.60 GHz
processors and 96 GB DDR4 2666MHz memory.

Distributed results and performance tests on real data were
performed on the Phase 1, “Haswell” partition platform of
the Cori system maintained by the National Energy Research
Scientific Computing Center (NERSC). Phase 1 of the Cori
supercomputer contains 2,388 nodes. Each node contains two-
sockets, each socket is populated with a 16-core Intel® Xeon™
Processors E5-2698 v3 (“Haswell”) at 2.3 GHz and 128 GB
DDR4 2133 MHz memory. With hyper-threading, each node
contains 64 logical cores (2 hyper threads per core).

B. Synthetic Data

We evaluated accuracy by comparing with a known, synthetic
transportation plan following the work of [29]. This can be done
by choosing any scaling vectors and then producing images
from the marginal constraints in (8). For example, if we have
two images, image one and image two, we can use image one as
u and image two as v (8). This produces two synthetic images,
f and g, on which we can test our algorithm. We note there
is some bias in choosing this synthetic test, as this is precisely
the form of transportation plan our algorithm aims to recover.
However, this also creates phantoms where sharp details in
the reference image, have diffused in the second, creating a
challenging non-rigid deformation test. We intend to perform
substantially more tests on various, known transformations in
future work.

To create synthetic images, we take a (640, 640, 580) crop
from the center of the loaded and unloaded L-Chondrite images.
We then set the scaling vectors, (u, v) in (8) to be these crops.
As these transportation maps also depend on σ, we created a
transportation plan for sigma values of one through five. An
example of the resulting synthetic reference, target image for
σ value of 1 is given in Figure 1.

Sinkhorns iteration was performed on the synthetic dataset
and the sources of error collected were (a) the final residual,
denoted by r and given in (10); (b) the maximum differ-
ence between the truth displacement field and the computed
displacement field, denoted ||td − cd||∞; (c) the average
residual between the truth displacement field and the computed
displacement field, denoted ||td − cd||1.

A report of these errors is in Table I. Similar to previous work,
there are boundary effects which contribute to the maximum
error being relatively high [13]. The reconstruction error was
generally very low, indicating the transport plan can reproduce
either the reference or target image with high accuracy [14],
[13].

We also observe good qualitative results to accompany the
quantitative ones. For the synthetic images corresponding to
σ = 1, the ground truth deformation map and the computed
deformation map is presented in Figure 2. For this value of σ,
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Fig. 2: Example slices showing the magnitude of the deformation
map φ(x) from (4). The ground truth is shown on the left and the
result we compute is shown on the right.

the largest value in the ground truth was 1.36. For visualization,
the images were scaled by 255/1.36, clamped at 255 and
quantized to 8-bit integers. Qualitatively there is little difference
between the true deformation and that which we compute.

C. Real Data

Saved as floating point, each image occupies 55GB of
memory, making the memory footprint for the scaling vectors
110GB. We chose the largest scale to be σM = 15 and the
lowest to be σm = 5. In each experiment, instability set in at
σ = 7 and the algorithm was terminated.

The final residual for σ = 7 was still very low, 0.023,
indicating an accurate reconstruction of both reference and
target images. Figure 4 shows the deformation map rendering.

We note that the current implementation does not subtract off
a rigid transformation needed to be able to view finer details
such as cracks. Most of the computed deformation seen is
overall sample motion. We intend to follow up this work with
a more thorough investigation that will allow detection of a
region of highest interest based on the analysis of the digital
volume correlation results.

D. Performance

Our performance tests examined strong scalability, fixing
the size of the dataset and varying the number of processors
applied to the problem. A processor, in these results, refers
to a logical CPU core. Each MPI rank was assigned a single
logical core. The results are presented in Figure 3. We achieve
square root scaling up to 8192 processors.

Relative to the time to acquire and reconstruct a microCT
image at the beamline, the computation time is acceptable for
a number of use cases. The acquisition time of µCT images
depends on several aspects of the beamline experiment. A
number of experiments, particularly at Beamline 8.3.2 at the

TABLE I: Quantitative Results on Synthetic Data

σ Residual r ||td − cd||1 ||td − cd||∞
5 0.005 0.047 0.943
4 0.006 0.039 0.897
3 0.007 0.031 0.815
2 0.009 0.023 0.642
1 0.006 0.012 0.525
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Fig. 3: Strong scaling investigation of DVC. Numbers above
the data points indicate time in seconds for convenience.

Advanced Light source, use monochromatic light and require
high resolution. Image acquisition, including reconstruction, in
this setting can take between 1 and 5 minutes. For this group
of experiments our turnaround time is short enough that it fits
within the experimental workflow and could help guide the
imaging. For lower resolution experiments, acquisition speeds
can take as little as 100 milliseconds, which is beyond our
current capability and is the subject of future work.

We expect performance to drop off for a larger number of
processors due to increased communication from size of the
ghost zones for Gaussian blur, particularly with the window
sizes considered in our application. As blocks get smaller and
the width of the ghost zones is held constant, the information
needed for each point extends beyond what is computed by a
single neighbour, making the exchange phase more costly.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We have presented a model for global digital volume correla-
tion which is parallelizable for large scale applications. We have
demonstrated that this model can compute challenging non-
rigid deformations as well as scale to large scientific datasets
produced by µCT. While this current work is already promising,
there are several future directions to be pursued. In particular,
a more thorough validation of the model with real data for
different science applications. In particular, we will need to do
further experiments to determine specific experimental feedback
loops to be informed by these deformation maps. The ultimate
goal of this work is an algorithm which can be deployed at
a synchrotron beamline. While we have provided theoretical
evidence of connections with global DVC approaches, more
empirical evidence validating the model.
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Fig. 4: Render of the deformation map for a 2560x2560x2160
volume.
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[22] Quentin Mérigot. A multiscale approach to optimal transport. Computer
graphics forum: journal of the European Association for Computer
Graphics, 30(5):1583–1592, August 2011.

[23] Adam M Oberman and Yuanlong Ruan. An efficient linear programming
method for optimal transportation. arXiv preprint arXiv:1509.03668,
2015.

[24] Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian
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