
Fast Merge Tree Computation via SYCL
Arnur Nigmetov* Dmitriy Morozov†

Lawrence Berkeley National Laboratory

ABSTRACT

A merge tree is a topological descriptor of a real-valued function.
Merge trees are used in visualization and topological data anal-
ysis, either directly or as a means to another end: computing a
0-dimensional persistence diagram, identifying connected compo-
nents, performing topological simplification, etc.

Scientific computing relies more and more on GPUs to achieve
fast, scalable computation. For efficiency, data analysis should take
place at the same location as the main computation, which motivates
interest in parallel algorithms and portable software for merge trees
that can run not only on a CPU, but also on a GPU, or other types
of accelerators. The SYCL standard defines a programming model
that allows the same code, written in standard C++, to compile
targets for multiple parallel backends (CPUs via OpenMP or TBB,
NVIDIA GPUs via CUDA, AMD GPUs via ROCm, Intel GPUs
via Level Zero, FPGAs). In this paper, we adapt the triplet merge
tree algorithm to SYCL and compare our implementation with the
VTK-m implementation, which is the only other implementation of
merge trees for GPUs that we know of.

Keywords: triplet merge tree, computations on GPU, SYCL

Index Terms: Computing methodologies—Massively parallel
algorithms; Theory of computation—Computational geometry;

1 INTRODUCTION

Let f be a continuous scalar function defined on some domain D
in Rn. Let us consider connected components of its sublevel sets
f−1(−∞, t], as t changes from −∞ to ∞. Each time we pass a local
minimum, a new connected component appears; existing connected
components merge together as we pass a saddle. We say that two
points x,y ∈ D are equivalent, if f (x) = f (y), and both x and y
belong to the same connected component of f−1(−∞, f (x)]. Taking
a quotient of the domain by this equivalence relation, we obtain a
tree, called a merge tree. Each branch of the tree corresponds to a
pair of critical points (a,b), where a is a local minimum and b is a
saddle. Short branches, i.e., branches such that | f (a)− f (b)| is small,
can be intuitively interpreted as topological noise, small ‘wrinkles’
on the graph of f . Longer branches encode more significant features
of the function. Merge tree is an example of a topological descriptor.

Another topological descriptor is a persistence diagram — in our
case specifically, a zero-dimensional persistence diagram. It is a
multi-set of points (f (a), f (b)) ∈ R2, one point per branch (a,b)
of the merge tree. It can be viewed as ‘bag of features’: compared
to the merge tree, we lose the information about how the branches
merge together and keep only their endpoints. Persistence diagrams
are one of the main tools of topological data analysis. Since they are
not the main topic of this article, we refer an interested reader to the
textbook [10] for a proper definition of persistence diagrams in all
dimensions.

*e-mail:anigmetov@lbl.gov
†e-mail:dmorozov@lbl.gov

The last topological descriptor that we want to mention is a con-
tour tree, which captures the structure of level sets on simply con-
nected domains, i.e., domains where every loop can be contracted
to a point. Formally, we declare two points x,y ∈ D equivalent, if
f (x) = f (y), and x and y are in the same connected component of
f−1(f (x)). We get the contour tree by taking the quotient of D
by this equivalence relation. Contour tree is a well-known tool in
visualization community, since it allows to graphically present the
structure of high-dimensional scalar fields.

In practice, we do not work with continuous functions on con-
tinuous domains. Typically, a scalar function is given only on the
points of a grid. We can connect neighboring grid points, obtaining
a graph with the function defined on its vertices. This is a standard
setting, in which all the aforementioned topological descriptors are
computed in practice .

We are interested in merge trees for the following reasons:

• There are many applications of merge trees per se, including
halo finding in cosmology [11], finding atmospheric rivers
in climatology [16], tracking features in combustion simula-
tions [3, 4, 21], among many others.

• One of the standard algorithms for computing contour trees,
proposed by Carr et al. [6], computes the contour tree of f
from the merge trees of the functions f and − f (the authors
call them the join tree and the split tree).

• The connection between merge trees and persistence diagrams
is not just a shortcut for defining the diagram in dimension
0, but it is a practically efficient way to compute it. Persis-
tence diagrams are used, e.g., in neuroscience [25], mate-
rial science [5], chemistry [19], etc. We can also refer the
reader to the database of articles with real-world application of
TDA [12] for more applications. Note that for large inputs the
zero-dimensional persistence diagram is the only computable
option.

Often in these applications the input function is a result of a
numerical simulation on a supercomputer. As the supercomputer
architectures evolve and most of the computation is offloaded to fast
accelerators, most commonly GPUs, data analysis needs to keep
up with these changes and adapt the algorithms to run on the same
devices that contain the data. There are many reasons for this: com-
putational efficiency, minimizing data movement (both to reduce
runtime and for energy efficiency), the need for in situ analysis to
provide rapid feedback to the simulation, among many others. All
these factors motivate developing efficient, portable algorithms that
can run on as wide of a range of the devices as the simulations
themselves. In addition, the emerging interest in using topologi-
cal information in machine learning, especially, using persistence
diagrams to guide the learning process [8, 20, 23], motivates devel-
oping efficient implementations of topological algorithms that can
execute on the same devices as the machine learning pipelines, i.e.,
predominantly on GPUs.

Related work. In the serial setting, merge trees can be computed
using a variation of the classical Kruskal’s algorithm. There are
several papers proposing different shared-memory parallel algo-
rithms [4, 14, 24]. Carr et al. [7] proposed a parallel algorithm for

computing merge trees, implemented in VTK-m with OpenMP and
Thrust (CUDA). We recall more details about this algorithm in the
next section, because we use that implementation as a baseline for
comparison. Smirnov and Morozov [26] developed the concept of a
triplet merge tree, with a simple path-merging algorithm to compute
it. The main advantage of this algorithm is that it is lock-free, using
the compare-and-swap idiom. Since this is the algorithm that we
implement using SYCL in this paper, we also review it in the next
section.

Our contributions are as follows:

• We adapt the triplet merge algorithm [26] to SYCL, a program-
ming model targeting multiple processing units (including
CPUs, GPUs, and other accelerators).

• We experimentally evaluate our implementation, comparing
it to the VTK-m implementation of merge trees, which is the
only implementation that we know of that runs on GPUs (and
CPUs).

2 BACKGROUND

2.1 Merge Trees
Let f : X→R be a function on a space X . The merge tree of f is the
quotient space T f = X/ , where we identify two points x1 and x2
if and only if f (x1) = f (x2) =: y, and x1 and x2 belong to the same
connected component of the sublevel set f−1(−∞,y]. In our setting,
the space is a graph G = (V,E), and the function is defined only on
the vertices, f : V →R. We extend f to edges by linear interpolation
and write f : G → R. For c ∈ R, we use Gc to denote the sublevel
set: Gc := {v ∈ V | f (v) ≤ c}. The merge tree of f is a graph T f
with the same vertex set V . Assuming that f (v1)≤ f (v2), there is
an edge v1v2 in T f if and only if there does not exist a vertex u such
that f (v1)≤ f (u)≤ f (v2) and v1 and u are in the same component
of G f (u).

Merge trees can be computed in O(m logn) time, on a graph
with n vertices and m edges, using the union–find (disjoint sets) data
structure. First, one sorts the vertices by values of the function. Then
the algorithm goes over the sorted vertices and uses the union–find
data structure to determine which of the three alternatives occurs: (1)
the current vertex is a local minimum, so it creates a new connected
component in the sublevel set; (2) the current vertex belongs to
exactly one of the components that were present at the previous
vertex; (3) multiple connected components are merged together at
the current vertex. The requirement to process the vertices in sorted
order makes it difficult to parallelize this algorithm.

Peak pruning. Carr et al. [7] compute the merge tree in paral-
lel avoiding global sorting. For each vertex u that is not a local
minimum, they pick an arbitrary edge uv such that f (v) < f (u),
a completely independent and thus easily parallelizable operation.
They follow the selected edges f (u)> f (v)> f (w)> · · ·> f (z) to
build a path from every vertex u to a local minimum z; they say that
u is assigned to z. Among all vertices assigned to the same local
minimum z the authors identify those that can be saddles; such a sad-
dle candidate must have two neighbors below it that are assigned to
different local minima. They prove that the lowest saddle candidate
assigned to z is exactly the saddle paired with z. That is, the lowest
saddle candidate s is the saddle at which the sublevel set component
born at z merges into another one. This immediately gives the pair-
ing of the critical points and the branch structure of the merge tree.
The remaining part of their algorithm takes care of regular vertices
(those vertices that have degree two in the merge tree). Some of
those are readily available: all vertices that are assigned to z and
are below s must be on that branch. The authors remove all these
vertices and repeat the same procedure (note that some of the saddles
became minima after removal). This algorithm is implemented in
VTK-m [22], and we use it as a baseline for comparison.

Triplet merge trees. A different parallel algorithm is described
in [26]. Its main idea is to replace the standard merge tree, described
above, by its dual tree of branches. Each branch is a path that tracks
when a component is created and when it is merged with an older
component. It is represented as a triplet of vertices u, s, v, such
that f (v) < f (u) ≤ f (s) and u and v are in the same connected
component of the sublevel set G f (s). The triplet means that a branch
created by vertex u merges with a branch created by vertex v at
vertex s. Additionally, if u is a global minimum of f in its connected
component of the graph, then, by convention, (u,u,u) is a triplet.
It is convenient to interpret each triplet as a directed edge (u,v)
with a label s. Vertices of degree two in a standard merge tree
(i.e., the inner vertices of a branch) become leaves in the triplet
merge tree: they are represented by triplets (u,u,v). To get a unique
representation of a merge tree as a collection of triplets, we need two
conditions: (1) each vertex u appears exactly once as a first vertex
of some triplet; (2) for each (u,s,v), vertex v is the deepest vertex
in f−1(−∞, f (s)]. The first condition is called normalization, the
second one minimality.

In [26] the authors explain the details of a lock-free algorithm to
compute the triplet representation of T . We reproduce the algorithm
here for convenience, see Algorithm 1. Since we want to maintain
the normalization condition from the start, we represent the tree as a
map T , where the first vertex u of a triplet is the key; the entries are
pairs T [u] = (s,v) — the second and the third vertices of the triplet.
In the original CPU implementation, T [u] is a pointer to a pair, not a
pair itself. We ignore that in the pseudocode, but return to this issue
in Section 3.2, where we explain the changes needed for the GPU.

In the first loop, we initialize the tree with triplets (u,u,u) (which
corresponds to the case of no edges, E = /0). Then the algorithm
works in two phases: merge and repair.

The merge phase (lines 4–8) processes the edges E in parallel:
for each edge (u,v) it starts with a normalized merge tree on a graph
missing this edge and changes it to incorporate (u,v). The proof
of correctness can be found in [26]. The updates are synchronized
using compare-and-swap operations (Algorithm 3, line 14), which
guarantees correctness. Logically, compare-and-swap (CAS, Algo-
rithm 2) checks if the variable v that we want to modify has the
value that we expect (usually this means that another thread has not
modified it since we read its value), and, only in that case, changes
it to the desired value. It returns the result of the comparison. All
these operations are performed atomically, as a single transaction. If
the comparison failed, we simply start from scratch (line 15).

The repair phase fixes the minimality condition that may be vi-
olated in the merge phase. Let u be a vertex, a a real number. We
call vertex v with the smallest function value in the connected com-
ponent of u in f−1(−∞,a] the representative of u at level a. If we
view triplets (u,s,v) as directed edges from u to v, then, to find a
representative of u, we just need to follow these edges until we reach
the deepest vertex. This is exactly the role of Algorithm 4. To ensure
minimality, in Algorithm 5 we simply replace triplet (u,s,v) with
the triplet (u,s,v′), where v′ is the representative of u.

Algorithm 1 Triplet Merge Tree Computation.
1: function COMPUTEMERGETREE(G)
2: for all vertex u ∈ G do in parallel
3: T [u]← (u,u)
4: for all edge (u,v) ∈ G do in parallel
5: if f (v)< f (u) then
6: MERGE(T , u, u, v)
7: else
8: MERGE(T , v, v, u)
9: for all vertex u ∈ G do in parallel

10: REPAIR(u)
11: return T

Algorithm 2 Compare-and-Swap.
1: function CAS(v, expected, desired)
2: if v = expected then
3: v← desired
4: return True
5: else
6: return False

Algorithm 3 Parallel Merge.
1: function MERGE(T , u, s, v)
2: (su,u′)← T [u]
3: if f (su)< f (s) then
4: return MERGE(T , u′, s, v)
5: (sv,v′)← T [v]
6: if f (sv)< f (s) then
7: return MERGE(T , u, s, v′)
8: if u = v then
9: return

10: if f (v)< f (u) then
11: SWAP((u,su,u′), (v,sv,v′))
12: if CAS(T [v], (sv,v′), (s,u)) then
13: MERGE(T , u, sv, v′)
14: else
15: MERGE(T , u, s, v)
16: return T

Algorithm 4 Representative in Triplet Merge Tree.
1: function REPRESENTATIVE(T , u, a)
2: (s,v)← T [u]
3: while f (s)≤ a and s 6= v do
4: u← v
5: (s,v)← T [u]
6: return v

3 TMT-SYCL
3.1 SYCL
SYCL is a programming model for writing heterogeneous parallel
programs. It was originally designed to provide a layer of abstraction
over OpenCL, but has since evolved into an independent standard,
with several independent implementations, not bound to a particular
parallel device. The main feature of SYCL is that it uses a single-
source code written in standard C++. The code for parallel execution
on device is written in the same file with the host code, and takes
advantage of the standard language constructs. This single source
is then processed in multiple passes of a compiler (or different
compilers for host and device). Different implementations of SYCL
target CPUs via OpenMP or TBB, NVIDIA GPUs via CUDA, AMD
GPUs via ROCm, Intel GPUs via Level Zero, Intel and Xilinx
FPGAs. We use an implementation called hipSYCL [2]. It supports
OpenMP, NVIDIA CUDA and AMD (ROCm) backends.

3.2 Changes needed for GPU
One limitation of SYCL is lack of support for dynamic memory
allocation. On-device buffers are declared, with specific size, before
the execution of the device code that uses them. In the CPU imple-
mentation1 of [26], the tree is represented as a map with vertices as
keys and pointers as values. The pointer corresponding to vertex u
refers to an object that stores the two vertices s and v. It also stores

1Available publicly in Reeber, github.com/mrzv/reeber

Algorithm 5 Repair Triplet Merge Tree.
1: function REPAIR(T , u)
2: (s,v)← T [u]
3: v′← REPRESENTATIVE(T , u, f (s))
4: if u 6= v′ then
5: T [u]← (s,v′)
6: return T [u]

a vector of degree-2 vertices. Note that in the CPU implementation
vertices were represented as double-word variables, which means
that we cannot use compare-and-swap to atomically update the pair
of values (s,v). Normal CAS operates on single words, and double
word CAS, available on x86-64, can update 2 contiguous words in
memory atomically, but we would need to update 4 words. This is
the reason for T [u] being a pointer to a pair.

Although it is possible to implement a dynamic memory allocator
on top of the static buffers (and then implement a hash map on top),
we choose a simpler route. The triplet (u,s,v) is represented as an
array of pairs: T [u] = (s,v). Another limitation of SYCL is that it
does not provide a double-word compare-and-swap operation, which
the triplet merge algorithm requires to atomically update the pair
(s,v). We choose a simple solution: we limit the vertex identifier to
a 32-bit integer. This way a pair can be packed into a 64-bit integer
and a regular compare-and-swap operation, which is supported by
SYCL, suffices. This limitation is minor, given the current memory
constraints on GPUs: the data and the tree together for 232 vertices,
assuming 32-bit floating point and 32-bit integers for the tree, would
require 48 GiB on the device.

4 EXPERIMENTS

Datasets. We use the following datasets. All of them, except NYX,
were downloaded from P. Klacansky’s database [17]. We used
averaging and interpolation to downsample the higher-resolution
datasets.

• Cosmology (NYX) [1]. This is a snapshot of the dark matter
density from a Nyx simulation (for redshift z = 2).

• Magnetic reconnection (MAG) [15]. This phenomenon is ob-
served in plasma; the lines of magnetic field change their
connectivity. The dataset is a single step of a simulation.

• Isotropic pressure (IP) [27]. The function is the pressure field
of a direct numerical simulation of forced isotropic turbulence.

• Entropy field of Richtmyer–Meshkov instability (RM) [9]. This
is an event observed when two fluids of different density are
intensively mixed with other by the impact of a shock wave.

• Three CT scans. CHAM is a CT scan of a chameleon, scanned
by DigiMorph. WOOD is a CT scan of a wood branch by the
Computer-Assisted Paleoanthropology group and the Visual-
ization and MultiMedia Lab at University of Zurich. PAW is
a scan of a Pawpawsaurus Campbelli. These datasets have
rich topology, if one considers the evolution of superlevel sets,
because many connected components emerge at high density.

• TRUSS is a simulated CT scan of an 8×8×8 octet truss [18].
This dataset has a specifically regular structure.

• JICF-Q is a Q criterion of a jet in cross-flow [13]. If ~v is a
velocity vector field of fluid, then its gradient ∇v is a 3× 3
tensor. It can be decomposed into the symmetric part S and
anti-symmetric part Ω: ∇~v = S+Ω. Q criterion is defined as
1
2 (‖Ω‖

2−‖S‖2) and is used to detect vortices. Most of the
topological evolution of this dataset is localized in a small part
of the domain.

github.com/mrzv/reeber

Setup. Experiments were performed on a computer with Intel(R)
Xeon(R) Gold 6230 CPU (20 physical cores), NVIDIA GeForce
RTX 2080 Ti GPU, running Arch Linux. For comparison, we used
VTK-m code for computing the contour tree. Since VTK-m com-
putes contour trees from two merge trees, following the algorithm of
Carr et al. [6], we measured the running time of both computations
separately. To this end, we modified the code of VTK-m, timing
both calls of the merge tree computation routine separately, to make
the comparison fair by excluding the overhead to combine them
into the contour tree.2 However, in all these datasets the merge tree
of − f carries more information than the tree of f (one can verify
that by visually exploring the function for different threshold values
using a tool at [17]). For example, for the cosmological dataset, the
branches of T− f are born at the local maxima of f , which capture
halos, clusters of high density, while T f consists of a single path.
Therefore, we report the results for − f only. Using the terminology
of [7], we are only interested in the split tree. Each experiment was
run 5 times, and we report the average timing. The running time is
stable across the experiments, showing only minor fluctuations of
5% maximum.

Results. On two datasets, NYX and MAG, our implementation
clearly outperforms VTK-m, see Figs. 2 and 3. On CT scans (CHAM,
WOOD, TRUSS) our GPU implementation also shows best running
times, but here the advantage is less visible, see Figs. 6 to 8. Both
algorithms are very data-dependent, and this behavior is not at all
universal: for the IP dataset, our implementation is just a bit slower,
as shown in Fig. 4, but for the RM dataset, it performs significantly
worse, see Fig. 5. On the other hand, for the largest variant of PAW,
performance of VTK-m deteriorates, see Fig. 10. One possible
explanation for this is that the topology of NYX and MAG datasets is
richer: the number of branches in the merge tree for 5123 samples
from cosmological and magnetic reconnection datasets is between 7 ·
106 and 8 ·106, while for IP the tree consists of much fewer branches,
around 5 ·105. Thus, if the function is expected to be topologically
complex, the triplet merge tree algorithm has an advantage.

We note that the topological complexity is not the only factor. The
triplet merge tree algorithm’s worst-case complexity is quadratic,
and it is likely that Richtmyer–Meshkov data set is triggering this
behavior. This data set has another distinctive feature. Using the
online visualization tool [17], we see that at first the evolution of
the superlevel sets is similar to CT scans: there are multiple peaks
where the function value is high and, as we decrease the threshold,
they gradually merge together, so that the volume of the superlevel
set changes slowly. However, then there are two sharp spikes: as we
decrease the threshold by a tiny amount, half of the domain is added
to the superlevel set. One example of this is shown in Fig. 1.

We summarize all comparisons in Table 1. When we compare
the GPU versions of our implementation and VTK-m, we often
see a speedup by a factor of 10–14 for the smallest versions of the
datasets, 1283 and similar sizes. This likely has to do with some
initial setup computation performed by the VTK-m code rather than
with the difference between the algorithms. For larger sizes, we
often outperform VTK-m by a factor that ranges between 1.5 and
4.8.

Perhaps the most disappointing result of our experiments is
that we never see a significant improvement when switching from
OpenMP parallelism to GPU; in fact, sometimes the latter is slightly
slower. The highest speed up that we observed was for TRUSS
dataset, where our GPU implementation performed almost 5 times
faster than its OpenMP variant, but this is an exception. Typically,
we gain between 10 to 50 percent speed up when we move to GPU.

2It is difficult to measure the time it takes to transfer data to GPU and
back from it. However, the output of nvprof shows that the transfer takes a
relatively small time for both VTK-m and tmt-sycl codes, about 10% to 15%
of the total execution.

The difference is too small to be seen in the plots with logarithmic
scale. As mentioned in the footnote, we cannot fully attribute this to
the time needed to transfer data to and from the device. Of course,
the ability to compute the tree directly on the GPU is still useful:
either to free the CPU for another task, or especially, when the in-
put data already resides on the device (e.g., as part of a numerical
simulation or machine learning pipeline).

Finally, we evaluate the strong scaling of the OpenMP versions
of the codes, as we increase the number of threads processing the
datasets of size 5123, as shown in Figs. 11 and 123. As we can
see, our implementation usually scales better than VTK-m, showing
some improvement even as we go from 64 to 80 threads, even though
at this number of threads we are using hyperthreading (there are
only 40 physical cores available).

5 CONCLUSION

We presented a GPU implementation of a merge tree computation
that often performs better than the previously available implemen-
tation in VTK-m for inputs that are topologically rich and do not
undergo drastic changes in the volume of the sublevel set. We be-
lieve that such inputs are reasonably common, so it makes sense to
use the GPU version of the triplet merge algorithm. There are two
questions for future work. First, how can we gain more from GPU
parallelism? Second, how to adapt our algorithm to a distributed
setting? This is not trivial because of the 32 bit limitation that we
had to make in order to pack an edge into 64 bits. While innocent
for a single GPU, for large-scale simulations that run on the GPUs
of multiple nodes, it becomes a problem.

ACKNOWLEDGEMENTS

This work was supported by Laboratory Directed Research and De-
velopment (LDRD) funding from Berkeley Lab, provided by the
Director, Office of Science, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. This material is based upon
work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) program.

REFERENCES

[1] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel.
Nyx: A massively parallel amr code for computational cosmology. The
Astrophysical Journal, 765(1):39, 2013.

[2] A. Alpay and V. Heuveline. SYCL beyond OpenCL: The architecture,
current state and future direction of hipSYCL. In Proceedings of the
International Workshop on OpenCL, number Article 8 in IWOCL ’20,
p. 1. Association for Computing Machinery, New York, NY, USA, Apr.
2020. doi: 10.1145/3388333.3388658

[3] J. C. Bennett, V. Krishnamoorthy, S. Liu, R. W. Grout, E. R. Hawkes,
J. H. Chen, J. Shepherd, V. Pascucci, and P.-T. Bremer. Feature-based
statistical analysis of combustion simulation data. IEEE transactions
on visualization and computer graphics, 17(12):1822–1831, 2011.

[4] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell.
Interactive exploration and analysis of large-scale simulations using
topology-based data segmentation. IEEE Transactions on Visualization
and Computer Graphics, 17(9):1307–1324, 2010.

[5] M. Buchet, Y. Hiraoka, and I. Obayashi. Persistent homology and mate-
rials informatics. In Nanoinformatics, pp. 75–95. Springer, Singapore,
2018.

[6] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Computational Geometry, 24(2):75–94, 2003.

[7] H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel peak
pruning for scalable SMP contour tree computation. In 2016 IEEE
6th Symposium on Large Data Analysis and Visualization (LDAV), pp.
75–84. IEEE, 2016.

3This experiment was performed on a machine that has not one, but two
CPUs with 20 physical cores each. Other characteristics of the two machines
are the same.

Dataset Size Comparison OpenMP Comparison GPU TMT-SYCL GPU speedup VTK-m GPU speedup
WOOD 128×128×128 2.177 14.659 1.392 0.207

256×256×256 3.294 4.853 1.459 0.991
512×512×512 4.859 3.404 1.298 1.853

CHAM 128×128×128 1.602 13.091 1.526 0.187
256×256×256 0.966 3.068 1.578 0.496
512×512×512 2.468 1.504 1.046 1.717

TRUSS 128×128×128 1.155 9.770 1.885 0.223
256×256×256 1.223 2.838 2.423 1.045
512×512×512 0.818 2.710 4.917 1.485

MAG 128×128×128 72.489 14.362 0.957 4.833
256×256×256 13.953 4.278 1.070 3.491
512×512×512 6.389 2.997 1.073 2.288

IP 128×128×128 1.688 0.905 1.143 2.132
256×256×256 1.694 0.984 1.093 1.881
512×512×512 1.506 0.765 1.060 2.087

PAW 119×80×136 2.022 18.417 1.282 0.141
238×160×272 2.053 5.113 1.318 0.529
476×320×544 2.803 2.261 1.411 1.750
952×640×1088 4.791 83.137 1.135 0.065

JICF-Q 176×135×137 2.294 11.631 1.386 0.273
352×270×275 2.075 2.745 1.196 0.904
704×540×550 1.476 1.287 1.144 1.312

RM 128×128×128 0.772 0.390 0.920 1.821
256×256×256 0.290 0.313 1.878 1.735
512×512×512 0.023 0.218 19.520 2.047

NYX 128×128×128 3.068 1.852 0.966 1.600
256×256×256 3.777 2.191 0.986 1.701
512×512×512 4.042 4.412 0.915 0.838

Table 1: Comparison of our implementation to VTK-m. Comparison columns for OpenMP and GPU: running time of VTK-m divided by the
running time of TMT-SYCL (greater than 1 means our implementation is faster). TMT-SYCL GPU speed-up: our running time on OpenMP
divided by the running time on GPU (speedup factor of switching to GPU). VTK-m GPU speed-up: VTK-m running time on OpenMP divided
by VTK-m running time on GPU (speed-up factor of switching to GPU for VTK-m).

(a) Slightly above the threshold (b) Slightly below the threshold

Figure 1: Screenshots of visualization of RM dataset for two isovalues.

2563 5123 7683 10243

1

10

100

0.86

8.27

28.62

73.32

0.54

4.86

34.15

0.29

2.23

7.2

16.6

0.3

2.29

7.98

Size

Se
co

nd
s

Cosmology, z = 2

VTK-m, OpenMP
VTK-m, GPU
tmt-sycl, OpenMP
tmt-sycl, GPU

Figure 2: Running time comparison of tmt-sycl and VTK-m, on
NYX dataset, varying input size.

[8] C. Chen, X. Ni, Q. Bai, and Y. Wang. A topological regularizer for
classifiers via persistent homology. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 2573–2582, 2019.

[9] R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A.
Mirin, Y. Zhou, D. H. Porter, and P. R. Woodward. Three-dimensional
simulation of a Richtmyer–Meshkov instability with a two-scale initial
perturbation. Physics of Fluids, 14(10):3692–3709, 2002.

[10] H. Edelsbrunner and J. L. Harer. Computational topology: an intro-
duction. American Mathematical Society, 2022.

[11] B. Friesen, A. Almgren, Z. Lukić, G. Weber, D. Morozov, V. Beckner,
and M. Day. In situ and in-transit analysis of cosmological simulations.
Computational Astrophysics and Cosmology, 3(1):4, 2016.

[12] B. Giunti and J. Lazovskis. Tda-applications.

1283 2563 5123

0.1

1

10

3.26
4.47

15.91

0.68
1.28

6.95

5.9 ·10−2

0.34

2.53

4.9 ·10−2

0.31

2.39

Size

Se
co

nd
s

Magnetic reconnection

VTK-m, OMP
VTK-m, GPU
tmt-sycl, OMP
tmt-sycl, GPU

Figure 3: Running time comparison of tmt-sycl and VTK-m, on
MAG dataset, varying input size.

khttps://www.zotero.org/groups/2425412/tda-applications, 2020.
[13] R. W. Grout, A. Gruber, H. Kolla, P.-T. Bremer, J. C. Bennett, A. Gyu-

lassy, and J. H. Chen. A direct numerical simulation study of turbulence
and flame structure in transverse jets analysed in jet-trajectory based
coordinates. Journal of Fluid Mechanics, 706:351–383, 2012. doi: 10.
1017/jfm.2012.257

[14] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
merge trees with fibonacci heaps. In 2017 IEEE 7th Symposium on
Large Data Analysis and Visualization (LDAV), pp. 6–15. IEEE, 2017.

[15] F. Guo, H. Li, W. Daughton, and Y.-H. Liu. Formation of hard power
laws in the energetic particle spectra resulting from relativistic magnetic
reconnection. Phys. Rev. Lett., 113:155005, Oct. 2014. doi: 10.1103/
PhysRevLett.113.155005

[16] M. Inatsu, H. Kato, Y. Katsuyama, Y. Hiraoka, and I. Ohbayashi. A

1283 2563 5123 10243

0.1

1

10

8.1 ·10−2

0.48

3.21

22.08

6.5 ·10−2

0.3

2.17

15.9

4.4 ·10−2

0.27

2.08

3.8 ·10−2

0.25

1.54

Size

Se
co

nd
s

Isotropic pressure

VTK-m, OpenMP
tmt-sycl, OpenMP
tmt-sycl, GPU
VTK-m, GPU

Figure 4: Running time comparison of tmt-sycl and VTK-m, on IP
dataset, varying input size.

1283 2563 5123 10243

0.1

10

1,000

0.13

1.75

179

8,030

0.11

0.93

9.23

7.1 ·10−2

0.5

4.1

24.11

3.9 ·10−2

0.29

2

Size

Se
co

nd
s

Richtmyer–Meshkov

tmt-sycl, OpenMP
tmt-sycl, GPU
VTK-m, OpenMP
VTK-m, GPU

Figure 5: Running time comparison of tmt-sycl and VTK-m, on RM
dataset, varying input size.

cyclone identification algorithm with persistent homology and merge-
tree. SOLA, 13:214–218, 2017.

[17] P. Klacansky. Open scientific visualization datasets.
klacansky.com/open-scivis-datasets, 2021.

[18] P. Klacansky, H. Miao, A. Gyulassy, A. Townsend, K. Champley,
J. Tringe, V. Pascucci, and P.-T. Bremer. Virtual inspection of additively
manufactured parts. In 2022 IEEE 15th Pacific Visualization Sympo-
sium (PacificVis), pp. 81–90, 2022. doi: 10.1109/PacificVis53943.2022
.00017

[19] A. S. Krishnapriyan, M. Haranczyk, and D. Morozov. Topological
descriptors help predict guest adsorption in nanoporous materials. The
Journal of Physical Chemistry C, 124(17):9360–9368, 2020.

[20] J. Leygonie, S. Oudot, and U. Tillmann. A framework for differential
calculus on persistence barcodes, Oct. 2019.

[21] A. Mascarenhas, R. W. Grout, P.-T. Bremer, E. R. Hawkes, V. Pascucci,
and J. H. Chen. Topological feature extraction for comparison of
terascale combustion simulation data. In Topological Methods in Data
Analysis and Visualization, pp. 229–240. Springer, 2011.

[22] K. Moreland, C. Sewell, W. Usher, L.-T. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen,
R. Maynard, and B. Geveci. VTK-m: Accelerating the visualization
toolkit for massively threaded architectures, 2016. doi: 10.1109/mcg.

128 256 512 1024

0.1

1

10

8.7 ·10−2

0.51

2.93

24.5

5.7 ·10−2

0.32

2.8

0.14

0.49

7.23

50.26

0.75 0.99

4.21

Size

Se
co

nd
s

Chameleon CT Scan

tmt-sycl, OpenMP
tmt-sycl, GPU
VTK-m, OpenMP
VTK-m, GPU

Figure 6: Running time comparison of tmt-sycl and VTK-m, on
CHAM dataset, varying input size.

150 300 600 1,200

0.1

1

10

100

1,000

0.15

1.42

23.6

424

7.8 ·10−2

0.59

4.8

0.17

1.74

19.32

0.76
1.66

13.01

Size

Se
co

nd
s

Synthetic truss with defects

tmt-sycl, OpenMP
tmt-sycl, GPU
VTK-m, OpenMP
VTK-m, GPU

Figure 7: Running time comparison of tmt-sycl and VTK-m, on
TRUSS dataset, varying input size.

2016.48
[23] A. Nigmetov, A. S. Krishnapriyan, N. Sanderson, and D. Morozov.

Topological regularization via persistence-sensitive optimization, 2020.
[24] V. Pascucci and K. Cole-McLaughlin. Parallel computation of the

topology of level sets. Algorithmica, 38(1):249–268, 2004.
[25] G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J.

Hellyer, and F. Vaccarino. Homological scaffolds of brain functional
networks. Journal of The Royal Society Interface, 11(101):20140873,
2014.

[26] D. Smirnov and D. Morozov. Triplet merge trees. In Topological
Methods in Data Analysis and Visualization V: Theory, Algorithms,
and Applications, 2020.

[27] P. Yeung, D. Donzis, and K. Sreenivasan. Dissipation, enstrophy and
pressure statistics in turbulence simulations at high Reynolds numbers.
Journal of Fluid Mechanics, 700:5, 2012.

128 256 512 1,020

0.1

1

10

100

7.1 ·10−2

0.47

3.44

25.7

5.1 ·10−2

0.32

2.65

0.15

1.54

16.72

164.4

0.75
1.55

9.02

Size

Se
co

nd
s

CT scan of a woodbranch

tmt-sycl, OpenMP
tmt-sycl, GPU
VTK-m, OpenMP
VTK-m, GPU

Figure 8: Running time comparison of tmt-sycl and VTK-m, on
WOOD dataset, varying input size.

256 512

0.1

1

10

9.7 ·10−2

0.64

4.92

7 ·10−2

0.54

4.3

0.22

1.33

7.26

0.81

1.47

5.53

Size

Se
co

nd
s

Q criterion of jet in crossflow

tmt-sycl, OpenMP
tmt-sycl, GPU
VTK-m, OpenMP
VTK-m, GPU

Figure 9: Running time comparison of tmt-sycl and VTK-m, on
JICF-Q dataset, varying input size.

128 256 512 1,020

0.1

1

10

100

1,000

5 ·10−2

0.26

2.23

14.3

3.9 ·10−2

0.2

1.58

12.6

0.1

0.54

6.25

68.51

0.72 1.01

3.57

1,056.65

Size

Se
co

nd
s

CT Scan of Pawpawsaurus

tmt-sycl, OpenMP
tmt-sycl, GPU
VTK-m, OpenMP
VTK-m, GPU

Figure 10: Running time comparison of tmt-sycl and VTK-m, on
PAW dataset, varying input size.

1 2 4 8 16 40 80
1

10

100

35.9

18.5
9.98

5.72
3.58

2.35
1.55

109.4
59.44

35.12
25.03

18.74 15.44 15.15

threads

Se
co

nd
s

Strong scaling

tmt-sycl, NYX VTK-m, NYX
tmt-sycl, IP VTK-m, IP
tmt-sycl, MAG VTK-m, MAG

Figure 11: Strong scaling of OpenMP version of tmt-sycl and VTK-
m.

1 2 4 8 16 40 80

10

100

1,000

3,280

1,120
894

653
329

182
107

34.21
18.38

10.7
7.63 5.88 4.69 4.85

threads

Se
co

nd
s

Strong scaling, Richtmyer–Meshkov

tmt-sycl, RM
VTK-m, RM

Figure 12: Strong scaling of OpenMP version of tmt-sycl and VTK-
m.

	Introduction
	Background
	Merge Trees

	TMT-SYCL
	SYCL
	Changes needed for GPU

	Experiments
	Conclusion

