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1 Introduction

Nonlinear dimensionality reduction (NLDR) algorithms address the following
problem: given a high-dimensional collection of data points X C R¥, find
a low-dimensional embedding ¢ : X — R™ (for some n < N) which faith-
fully preserves the ‘intrinsic’ structure of the data. For instance, if the data
have been obtained by sampling from some unknown manifold M C RN —
perhaps the parameter space of some physical system — then ¢ might cor-
respond to an n-dimensional coordinate system on M. If M is completely
and non-redundantly parametrized by these n coordinates, then the NLDR
is regarded as having succeeded completely.

Principal components analysis, or linear regression, is the simplest form
of dimensionality reduction; the embedding function ¢ is taken to be a linear
projection. This is closely related to (and sometimes identifed with) classical
multidimensional scaling [2].

When there are no satisfactory linear projections, it becomes necessary
to use NLDR. Prominent algorithms for NLDR include Locally Linear Em-
bedding [T6], Isomap [18], Laplacian Eigenmaps [I], Hessian Eigenmaps [5],
and many more.

These techniques share an implicit assumption that the unknown mani-
fold M is well-described by a finite set of coordinate functions ¢1, ¢s, ..., ¢n :
M — R. Explicitly, some of the correctness theorems in these studies de-
pend on the hypothesis that M has the topological structure of a convex
domain in some R™. This hypothesis guarantees that good coordinates ex-
ist, and shifts the burden of proof onto showing that the algorithm recovers
these coordinates.

In this paper we ask what happens when this assumption fails. The
simplest space which challenges the assumption is the circle, which is one-
dimensional but requires two real coordinates for a faithful embedding.
Other simple examples include the annulus, the torus, the figure eight, the
2-sphere, the last three of which present topological obstructions to being
embedded in the Euclidean space of their natural dimension. We propose
that an appropriate response to the problem is to enlarge the class of co-
ordinate functions to include circle-valued coordinates 6 : M — S'. In a
physical setting, circular coordinates occur naturally as angular and phase
variables. Spaces like the annulus and the torus are well described by a
combination of real and circular coordinates. (The 2-sphere is not so lucky,
and must await its day.)

The goal of this paper is to describe a natural procedure for constructing
circular coordinates on a nonlinear data set using techniques from classical
algebraic topology and its 21st-century grandchild, persistent topology. We
direct the reader to [10] as a general reference for algebraic topology, and
to [6] for a survey of the theory of persistence. We also recommend [19] for
a more technical description of persistent homology.
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1.1 Related work

There have been other attempts to address the problem of finding good
coordinate representations of simple non-Euclidean data spaces. One ap-
proach [I5] is to use modified versions of multidimensional scaling specifi-
cally devised to find the best embedding of a data set into the cylinder, the
sphere and so on. The target space has to be chosen in advance. Another
class of approaches [TT1[4] involves cutting the data manifold along arcs and
curves until it has trivial topology. The resulting configuration can then
be embedded in Euclidean space in the usual way. In our approach, the
number of circular coordinates is not fixed in advance, but is determined
experimentally after a persistent homology calculation. Moreover, there is
no cutting involved; the coordinate functions respect the original topology
of the data.

1.2 Overview

The principle behind our algorithm is the following equation from homotopy
theory, valid for topological spaces X with the homotopy type of a cell
complex (which covers everything we normally encounter):

[X, 5" =H'(X;2) (1)

The left-hand side denotes the set of equivalence classes of continuous maps
from X to the circle S'; two maps are equivalent if they are homotopic
(meaning that one map can be deformed continuously into the other); the
right-hand side denotes the 1-dimensional cohomology of X, taken with
integer coefficients. In other language: S' is the classifying space for H!,
or equivalently S* is the Eilenberg—MacLane space K (Z,1). See section 4.3
of [10].

If X is a contractible space (such as a convex subset of R™), then
Hl(X;Z) = 0 and equation tells us not to bother looking for circu-
lar functions: any such function is homotopic to a constant function, and
can therefore be lifted to a real-valued function. On the other hand, if X has
nontrivial topology then there may well exist a nonzero cohomology class
[a] € H'(X;Z); we can then build a continuous function X — S* which in
some sense reveals [a].

Our strategy divides into the following steps.

1. Represent the given discrete data set as a simplicial complex or filtered
simplicial complex.

2. Use persistent cohomology to identify a ‘significant’ cohomology class
in the data. For technical reasons, we carry this out with coefficients
in the field F, of integers modulo p, for some prime p. This gives us
] € HI(X§]F1))-

3. Lift o] to a cohomology class with integer coefficients: [a] € H'(X;Z).
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4. Smoothing: replace the integer cocycle o by a harmonic cocycle in the
same cohomology class: @ € C'(X;R).
5. Integrate the harmonic cocycle & to a circle-valued function 6 : X — S*.

The paper is organized as follows. In Section 2.1} we derive what we need
of equation . Steps (1-5) of the algorithm are addressed in Sections
respectively. The correctness of the algorithm for persistent cocycles is
addressed in an appendix, Section

In Section [3| we report some experimental results.

2 Algorithm Details
2.1 Cohomology and circular functions

Let X be a finite simplicial complex. Let X% X', X? denote the sets of
vertices, edges and triangles of X, respectively. We suppose that the vertices
are totally ordered (in an arbitrary way). If @ < b then the edge between
vertices a, b is always written ab and not ba. Similarly, if @ < b < ¢ then the
triangle with vertices a, b, ¢ is always written abc.

Cohomology can be defined as follows. Let A be a commutative ring (for
example A = Z,F,,R). We define 0-cochains, 1-cochains, and 2-cochains as
follows:

¥ = C%X;A) = {functions f: X° — A}
ct = Cl(X;A) = {functions a : X' — A}
C? = C*(X;A) = {functions 4 : X? — A}

These are modules over A. We now define coboundary maps dy : C* — C!
and d; : Ct — C2.

(dof)(ab) = f(b) = f(a)
(di1cv)(abe) = a(be) — a(ac) + alab)

Let a € C'. If dya = 0 we say that « is a cocycle. If dof = a admits a
solution f € C° we say that « is a coboundary. The solution f, if it exists,
can be thought of as the discrete integral of a. It is unique up to adding
constants on each connected component of X.

It is easily verified that didof = 0 for any f € C°. Thus, coboundaries
are always cocycles, or equivalently Im(dy) C Ker(d;). We can measure the
difference between coboundaries and cocycles by defining the 1-cohomology
of X to be the quotient module

H'(X; A) = Ker(dy)/ Im(dp).

We say that two cocycles «, 8 are cohomologous if a — 3 is a coboundary.

We now consider integer coefficients. The following proposition fulfils
part of the promise of equation , by producing circle-valued functions
from integer cocycles. It will be helpful to think of S* as the quotient group
R/Z.
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Proposition 1 Let o € C'(X;Z) be a cocycle. Then there exists a contin-
wous function 0 : X — R/Z which maps each vertex to 0, and each edge ab
around the entire circle with winding number a(ab).

Proof We can define 6 inductively on the vertices, edges, triangles, ... of X.
The vertices and edges follow the prescription in the statement of the propo-
sition. To extend 6 to the triangles, it is necessary that the winding number
of 0 along the boundary of each triangle abc is zero. And indeed this is
a(be) — a(ac) + a(ab) = dya(abe) = 0. Since the higher homotopy groups
of St are all zero ([10], section 4.3), 6 can then be extended to the higher
cells of X without obstruction. O

The construction in Proposition [1| is unsatisfactory in the sense that all
vertices are mapped to the same point. All variation in the circle parameter
takes place in the interior of the edges (and higher cells). This is rather
unsmooth. For more leeway, we consider real coefficients.

Proposition 2 Let a € Cl(X;]R) be a cocycle. Suppose we can find o €
CY(X;Z) and f € C°(X;R) such that & = a + dof. Then there exists a
continuous function 0 : X — R/Z which maps each edge ab linearly to an
interval of length a(ab), measured with sign.

In other words, we can construct a circle-valued function out of any
real cocycle & whose cohomology class [@] lies in the image of the natural
homomorphism H'(X;7Z) — H*(X;R).

Proof Define 6 on the vertices of X by setting 6(a) to be f(a) mod Z. For
each edge ab, we have

0(b) —0(a) = f(b) — f(a)
= do f(ab)
a(ab) — a(abd)

which is congruent to @(ab) mod Z, since a(ab) is an integer.

It follows that 6 can be taken to map ab linearly onto an interval of
signed length @(ab). Since & is a cocycle, 6 can be extended to the triangles
as before; then to the higher cells. O

Proposition [2] suggests the following tactic: from an integer cocycle «
we construct a cohomologous real cocycle @ = a + dyf, and then define
0 = f mod Z on the vertices of X. If we can construct & so that the edge-
lengths |@(ab)| are small, then the behaviour of § will be apparent from its
restriction to the vertices. See Section .5l

2.2 Point-cloud data to simplicial complex

We now begin describing the workflow in detail. The input is a point-cloud
data set: in other words, a finite set S C RY or more generally a finite
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metric space. The first step is to convert S into a simplicial complex and
to identify a stable-looking integer cohomology class. This will occupy the
next three subsections.

The first lesson of point-cloud topology [8] is that point-clouds are
best represented by 1l-parameter nested families of simplicial complexes.
There are several candidate constructions: the Vietoris—Rips complex X =
Rips(S, €) has vertex set S and includes a k-simplex whenever all k + 1
vertices lie pairwise within distance € of each other. The witness complex
X¢ = Witness(L, S, €) uses a smaller vertex set L C S and includes a k-
simplex when the k + 1 vertices lie close to other points of S, in a certain
precise sense (see [3)9]). In both cases, X C X¢ whenever e < ¢. Either
of these constructions will serve our purposes, but the witness complex has
the computational advantage of being considerably smaller.

We determine X only up to its 2-skeleton, since we are interested in H.

2.8 Persistent cohomology

Having constructed a l-parameter family {X}, we apply the principle of
persistence to identify cocycles that are stable across a large range for e.
Suppose that €1,€s,..., €, are the critical values where the complex X*¢
gains new cells. The family can be represented as a diagram

X4 — X2 — ... — X

of simplicial complexes and inclusion maps. For any coefficient field F, the
cohomology functor H'(—; F) converts this diagram into a diagram of vector
spaces and linear maps over F; the arrows are reversed:

H'(X“;F) +— H' (X F) «— ... +— H' (X" F)

According to the theory of persistence [7)[19], such a diagram decomposes
as a direct sum of 1-dimensional terms indexed by half-open intervals of
the form [e;,¢;). Each such term corresponds to a cochain o € C'(X¢)
that satisfies the cocycle condition for € < €; and becomes a coboundary
for € < ¢;. The collection of intervals can be displayed graphically as a
persistence diagram, by representing each interval [e;, €;) as a point (e;, €;)
in the Cartesian plane above the main diagonal. We think of long intervals
as representing trustworthy (i.e. stable) topological information.

REMARK. This is where we start worrying about the coefficient ring.
The persistence decomposition theorem applies to diagrams of vector spaces
over a field. When we work over the ring of integers Z, however, the result
is known to fail: there need not be an interval decomposition. This is unfor-
tunate, since we require integer cocycles to construct circle maps. To finesse
this problem, we pick an arbitrary prime number p (such as p = 47) and
carry out our persistence calculations over the finite field F = F,,. The re-
sulting IF,, cocycle must then be converted to integer coefficients: we address
this in Section 2.4
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In principle we can use the ideas in [I9] to calculate the persistent co-
homology intervals and then select a long interval [e;,€;) and a specific
§ € [ei,€j). We then let X = X% and take o to be the cocycle in C'(X;TF)
corresponding to the interval.

PERSISTENT COCYCLE ALGORITHM. Explicitly, persistent cocycles can
be calculated in the following way. We discuss the correctness of this algo-
rithm in Section 2.AL

Suppose that the simplices in the filtered complex are totally ordered,
and labelled o1,02,...,0, so that o; arrives at time ¢;, where the se-
quence (€;) is non-decreasing. Write Xy = o1 Uoo U --- U gy. A cochain
a € C"(X,) = C*(Xy;F) can be represented as a vector (ai,az,...,as),
where a; = a(c;). The cochains corresponding to the standard basis vec-
tors are denoted &1, 69, ..., 0y.

We iterate over £ = 0,1,...,m, maintaining the following information
as we go:
— a set of indices I, C {1,2,...,¢} associated with ‘live’ cocycles;

— a list of cocycles (a; : ¢ € Ip) in C*(X,).

The cocycle «; involves only ¢; and those simplices of the same dimension
that appear later in the filtration sequence (thus only o, with j > ).

Initialize (¢ = 0): Set Iy = . The list of cocycles is empty.

Update (from £ — 1 to £): Our convention is to extend each cochain o =
(a1,az2,...,a0-1) in C*(Xy_1) to a cochain a = (aq,...,as_1,0) in C*(X,)
by appending 0. We still call it «.

Begin by computing, for each ¢ € I;_;, the coboundaries of the cocycles
a; of X,_1 within the larger complex X;. Since do; = 0 in C*(X,_q), it
follows that the coboundary da; in C*(X,) must be a multiple of the newest
basis vector 6, = (0,...,0,1). Write da; = ¢;6y.

— If all the ¢; are zero, then we have one new cocycle: let Iy = I, U {¢}
and define ay = dy.

— Otherwise, we lose a cocycle. Let j € I;_1 be the largest index for which
¢; # 0. Delete a; by setting I, = Ir—1 \ {j}, and restore the earlier
cocycles by setting a; + ; — (¢;i/cj)a;. The ‘lost’ cocycle is recorded
for posterity: write the persistence interval [e;, €¢) to the output, together
with its associated cocycle ;.

Finish (£ = m): Surviving cocycles are associated with semi-infinite inter-
vals. For each i € I,,,, write the interval [¢;, 00) to the output, together with
its associated cocycle a;.

REMARK. The reader may be more familiar with persistence diagrams
in homology rather than cohomology. In fact, the universal coefficient theo-
rem [I0] implies that the two diagrams are identical. The salient point is that
cohomology is the vector-space dual of homology, when working with field
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coefficients. That said, we cannot simply use the usual algorithm for persis-
tent homology: we are interested in obtaining explicit cocycles, whereas the
classical algorithm [19] returns cycles.

After completing the persistent cocycle calculation, up to some param-
eter value €.y, we are left with a collection of finite and semi-infinite per-
sistence intervals. For the next step, we select one such interval and a pa-
rameter value ¢ < €. contained in it. Henceforth, we fix our attention on
the complex X?. The cocycle associated to the interval can be regarded as a
cocycle on X9, by restriction. If we are working over the field F,, we denote
this cocycle a,.

In some of the experimental examples in Section [3] we consider several
persistence intervals at once, and use a value of § common to all of them.
This can be done elegantly using the persistence diagram. Select a point
(6,6) on the diagonal and draw the upper-left quadrant at that point. The
chosen persistence intervals must appear in the diagram as points in that
quadrant. We use this visual convention in all of our examples.

2.4 Lifting to integer coefficients

We now have a simplicial complex X = X and a cocycle o, € Cl(X iFp).
The next step is to ‘lift’ a;, by constructing an integer cocycle a which
reduces to a;, modulo p.

THEORY. To show that this is (almost) always possible, note that the
short exact sequence of coefficient rings 0 — Z 27— F, — 0 gives
rise to a long exact sequence, called the Bockstein sequence (see Section 3.E
of [10]). Here is the relevant section of the sequence:

- HY(X;Z) —» HY(X;F,) 5 02(X;2) 2 H2(X;Z) -

By exactness, the Bockstein homomorphism £ induces an isomorphism be-
tween the cokernel of H(X;Z) — H'(X;F,) and the kernel of H*(X;7Z) 3
H?(X;Z), and this kernel is precisely the set of p-torsion elements of H?(X; Z).
If there is no p-torsion, then it follows immediately that the cokernel of the
first map is zero. In other words H'(X;Z) — H'(X;F,) is surjective; any
cocycle o, € C'(X;F,) can be lifted to a cocycle a € C'(X;Z).

If we are unluckily sabotaged by p-torsion, then we pick another prime
and redo the calculation from scratch: it is enough to pick a prime that
does not divide the order of the torsion subgroup of H? (X;7Z), so almost
any prime will do.

PRACTICE. We construct o by taking the coefficients of o, in F, and
replacing them with integers in the correct congruence class modulo p. The
default is to choose coefficients close to zero; that is, in the range

{-(p—1)/2,...,-1,0,1,...,(p—1)/2}
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when p is an odd prime. (We do not recommend using p = 2; there is no
way to distinguish 1 from —1.)

We then evaluate dya. If dja = 0 then « is a cocycle and we are done.
Otherwise, it becomes necessary to do some repair work. Certainly dia = 0
modulo p, so we can write dya = pn for some n € C2(X;Z). To effect the
repair, we must write n as a coboundary by solving the equation n = d;(
for ¢ € CI(X; Z). Given a solution, the 1-cochain a — p( is the required lift
of oy, since dy (o — p¢) = pn — pn = 0.

When can this fail? We know that pn is a coboundary (indeed pn = dy ),
and we know that 7 is a cocycle (since p(din) = dy(pn) = didya = 0). Thus
we have a cohomology class [5] in H'(X;Z) such that p[n] = [pn] is zero
in cohomology. If H*(X;Z) has no p-torsion, then [5] must itself be zero,
meaning that 7 is a coboundary and there exists a solution to 7 = d;{. On
the other hand, if H?(X;Z) has p-torsion then there is no such guarantee.

This is all very well. Unfortunately, the equation n = d;( is a Diophan-
tine linear system. At present, we can provide no particular guidance as
to how to solve the system (other than by vague appeal to off-the-shelf
Diophantine or integer linear programming solvers), even if we know that a
solution exists. Fortunately, and mysteriously, this has not proved necessary
in any of our examples. In our experiments, the heuristic of lifting to integer
coefficients close to zero (that is, between +(p — 1)/2) produces a cocycle
every time. We wonder why.

To finish this section, we draw attention to a basic fact from classical
algebraic topology.

Proposition 3 Let X be a finite simplicial complex. Then HI(X; Z) is tor-
sion free, and H2(X;Z) has the same torsion as Hi(X;Z).

Proof More generally, H**1(X;Z) and H(X;Z) have isomorphic torsion
subgroups. This is a consequence of the universal coefficient theorems for
homology and cohomology: see [10, Corollary 3.3]. For the first statement,
note that Ho(X;Z) is the free abelian group generated by the connected
components of X. It is therefore torsion-free, hence so is H'(X;7Z). O

REMARK. We expect that p-torsion is extremely rare in ‘real’ data sets,
since it is symptomatic of rather subtle topological phenomena. For instance,
the simplest examples which exhibit 2-torsion are the nonorientable closed
surfaces (such as the projective plane and the Klein bottle). For a ‘randomly’
chosen prime p, one would be very surprised to find p-torsion arising from
a statistical data set. We do not know how to quantify this.

At any rate, the arguments in this section show us that we can recognize
torsion trouble when it occurs, by observing the failure of dya = 0 for the
chosen lift @. We then have the choice of changing primes or setting up an
appropriate integer linear programming problem.
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2.5 Harmonic smoothing

Given an integer cocycle a € CI(X;Z), or indeed a real cocycle a €
C'(X;R), we wish to find the ‘smoothest’ real cocycle @ € C*(X;R) co-
homologous to a. It turns out that what we want is the harmonic cocycle
representing the cohomology class [«].

We define smoothness. Each of the spaces C*(X; R) comes with a natural
Euclidean metric:

IF1IP = If(a)P,
aeX0

o> = > la(ab)]?,
abeXx?

IAIIP = > [A(abe)|*.
abc €X?

A circle-valued function 6 is ‘smooth’ if its total variation across the edges
of X is small. The terms |a(ab)|? capture the variation across individual
edges; therefore what we must minimize is ||a||?.

Proposition 4 Let o € CY(X;R). There is a unique solution & to the
least-squares minimization problem

argplin{||6¢||2 |3f € C°(X;R), a=a+dof}. (2)

Moreover, & is characterized by the equation dja = 0, where dg is the
adjoint of dy with respect to the inner products on C°, C?.

Proof Note that if dj & = 0 then for any f € C° we have

o+ do fI? = l|a|® + 2(ai, do f) + [|do 1|
= & + 2(dj @, f) + || do f]I?
= lla ]2 + lldo ]

which implies that such an & must be the unique minimizer. For existence,
note that
dsa—‘rdgd(]f:()

certainly has a solution f if Im(d§) = Im(djdp). But this is a standard
fact in finite-dimensional linear algebra: Im(A") = Im(A"A) for any real
matrix A; this follows from the singular value decomposition, for instance.
O

It is customary to construct the Laplacian A = df dy + dy df;. The twin
equations d; & = 0 and d§ & = 0 immediately imply (and conversely, can be
deduced from) the single equation Aa@ = 0; in other words & is harmonic.

REMARK. The space of harmonic 1-forms H*! = Ker(A) is naturally iso-
morphic to both the cohomology H' (X ; R) and the homology H; (X; R) with
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Fig. 1 A torus, and the integer cohomology e and homology o lattices of its
harmonic space H*. The two lattices are dual with respect to the inner product
whose unit circle is shown. We seek points in the cohomology lattice.

real coefficients. These are related to the integer cohomology and homology
groups via natural maps:

HY(X;Z) - H(X;R) = H'(X) = H;(X;R) « H,(X;7Z)

For our purposes (following Propositions [1| and we seek points in the
image of the map H'(X;Z) — H'(X). The set of these points is a full-rank
discrete lattice of the real vector space 31 (X). The Diophantine nature of
our calculations arises from the fact that we are trying to work in a lattice.

REMARK. Dual to the integer cohomology lattice is the integer homology
lattice, which is the image of the map H;(X;Z) — H'(X). The two lattices
are generally different. This is why we must compute persistent cocycles
rather than cycles. See Figure

2.6 Integration

The least-squares problem in equation can be solved using a standard
algorithm such as LSQR [14]. By Proposition [2] we can use the solution
parameter f to define the circular coordinate 6 on the vertices of X: simply
let 8 be the reduction of f modulo Z. This works because the original cocycle
« has integer coefficients.

REMARK. More generally, if & is an arbitrary real cocycle such that
(6] € m(H!(X; 2) - H'(X; R)),

it is a straightforward matter to integrate & to a circle-valued function 6
on the vertex set X°. Suppose that X is connected (if not, each connected
component can be treated separately) and pick a starting vertex xg and
assign 6(zg) = 0. One can use Dijkstra’s algorithm to find shortest paths to
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each remaining vertex from xy. When a new vertex b enters the structure
via an edge ab, we assign 0(b) = 0(a) + @(ab) (or 8(a) — &(ba) if the edge is
correctly identified as ba). If a vertex a is connected to xo by multiple paths
then the different possible values of 0(a) differ by an integer; this is where
we use the hypothesis that & is cohomologous to an integer cocycle.

2.7 Summary

The procedure described above seeks a 1-cocycle a with real coeflicients
which is:

— harmonic (for smoothness)
— in the integer cohomology lattice (for integrability to S = R/Z)
— persistent (for geometric significance)

The circular coordinate 6 is obtained by integrating &, either by brute force
or as a side-effect of the smoothing step.

In order to compute persistent cocycles we are forced to work over a field,
so we choose [F,, and then attempt to lift the results to Z. This step may fail
if H*(X;Z) (or equivalently H;(X;Z)) has nontrivial p-torsion. Even when
the lifting problem has a solution, we might have to solve a Diophantine
linear system to find it.

2.A Correctness of the cocycle algorithm.
The persistent cocycle algorithm is a stripped-down version of a more com-

plete calculation, which we describe now. The output of this calculation is
the following information:

A partition {1,2,...,m} =ITUPUQ, (where I, P,Q are disjoint).

— A bijective pairing between the sets P,Q. We write p < ¢ to indicate
that p is paired with q.

An ‘echelon basis’ ay, o, . . ., a;y, for C*(X,,). By ‘echelon’ we mean that
a; involves o; (with a nonzero coefficient) and subsequent cells only. In
vector notation, each ¢ is of the form

R Jj J J
a; =(0,...,0,a},aj,4,...,a},)

where a} # 0.
The coboundaries of the basis cochains «; are:

do; =0 foriel, (%)
doy, = ag for p € P with p<gq. (*p)
dog =0 forqeqQ, (%¢)
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Note that the echelon form implies that the kernel of each restriction map
C*(X,,) = C*(X;) is spanned by the cochains a1, ..., .

The key point is that the persistent cohomology of the filtered complex
can be deduced from any partition, pairing, and echelon basis which sat-
isfy the coboundary equations , and . Indeed, the equations
imply that the space of coboundaries in C*(X) has basis consisting of the
(restrictions of the) cochains

ag for g € Q with ¢ <7,

and the space of cocycles has basis consisting of these boundary cochains
together with the (restrictions of the) cochains

a; forie I withe <y,
ap forpe Pwithpagandp <j<yq.

Thus, each «;, for i € I, restricts to a nonzero cocycle over the index range
{i,...,m}; and each «y,, for p € P with p < ¢, restricts to a nonzero cocycle
over the index range {p, ..., ¢—1}. These give us persistence intervals [e;, 00)
and [ep, €4) respectively.

We now describe the computation, carried out iteratively. Suppose we
have determined a partition

{17"'76_1}:I€—1 UP@—IUQZ—L

a pairing <, and an echelon basis aq, ..., ay—1 for C*(X,_1), with cobound-
aries as above. We now add the cell oy.

The immediate impact is that coboundaries computed in C*(X,) have
an extra coefficient for the new cell. Thus, for some scalars ¢y, ca,...,¢co_1
we have

doy; = ¢;0y for i € Iy 4,

doy, = ag +cp0¢ for p € Py with p<gq.

doyg = cq46y¢ for ¢ € Q¢—1,
We can begin defining a new echelon basis @1, as, ..., &, as follows:
Q= forp e Pp_q

Og = doy, = ag+c,0¢ for g € Qe with p<g.
Note that the leading term of &, is unchanged from g, and that d&, =
d(da,) = 0.

Now we must consider &; for i € Iy_1, and ay.

Case 1: each ¢; =0, for i € I;_1. Then we can set &; = «; for each i € Ip_1,
and ay = 6. We set

Ii=1I, 1 U{{}, Pr=Pr1, Qr=Qu,
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and the coboundary equations , , are clearly satisfied.
Case 2: some ¢; # 0, for i € I;_1. Let j be the largest such index. Define

a; = oy,
a; = o; — (¢;/¢j)ay  for i € Ip_q with ¢ # j,

ay = dOéj = Cj(}.
The echelon property still holds (since j was chosen largest). If we set

Ii=I,1\{j}, Pi=P1U{j}, Qv=Qu1U{l},

and extend the pairing by adding the relation j < ¢, then it is easily seen
that the coboundary equations are satisfied.

The persistent cocycle algorithm can be thought of as a ‘forgetful’ or
‘neglectful’ version of the the calculation above. We maintain only the I,
and the echelon basis vectors a;. The index sets P, and Qy, the pairing <, and
the remaning basis vectors are not necessary for this. We write each interval
[ep, €4) to output as soon as we identify a pair p < ¢, but we immediately
discard the pairing information from memory. At the end we collect the
remaining intervals [e;, 00).

Thus, the correctness of the cocycle algorithm follows from the correct-
ness of the full cohomology algorithm. The correctness of the cohomology al-
gorithm follows from the fact that the persistent cohomology can be deduced
from any partition, pairing and echelon basis which satisfy the coboundary
equations.

3 Experiments
3.1 Software

Early experimental trials were performed with the Java-based jPlex simpli-
cial complex software [I7]. The present results and timings are obtained with
the C++ library Dionysus [12]. We used Paige and Saunders’ implementa-
tion of LSQR [13] for the least-squares problems in the harmonic smoothing
step.

3.2 General procedure

We tested our methods on several synthetic data sets with known topology,
ranging from the humble circle itself to a genus-2 surface (‘double torus’).
Most of the examples were embedded in R? or R3, with the exception of a
sample from a complex projective curve (embedded in CP?) and a synthetic
image-like data set (embedded in R120000),

In each case we selected vertices for the filtered simplicial complex: either
the whole set, or a smaller well-distributed subset of ‘landmarks’ selected by
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iterative furthest-point sampling. We then built a Rips or witness complex,
with maximum radius generally chosen to ensure around 10° simplices in
the complex.

In most cases, we show the persistence diagram produced by the cocycle
computation. The chosen value 4 is marked on the diagonal, with its upper-
left quadrant indicated in green lines. The persistent cocycles available at
parameter value ¢ are precisely those contained in that quadrant. Each of
those cocycles then produces a circular coordinate.

There are various figures associated with each example. Most important
are the correlation scatter plots: each scatter plot compares two circular
coordinate functions. These may be functions produced by the computation
(‘inferred coordinates’) or known parameters. These scatter plots are drawn
in the unit square, which is of course really a torus S x S*.

When the original data are embedded in R? or R3, we also display the
circular coordinates directly on the data set, plotting each point in color
according to its coordinate value interpreted on the standard hue-circle.
This works less well in grayscale reproductions, of course.

Finally, in certain cases we plot coordinate values against frequency, as
a histogram. This distributional information can sometimes be useful in the
absence of other information.

REMARK. When the goal is to infer the topology of a data set whose
structure is unknown, we do not have any ‘known parameters’ available to
us. We can still construct correlation scatter plots between pairs of inferred
coordinates, and the distributional histograms for each coordinate individ-
ually. We exhort the reader to view the following examples through the lens
of the topological inference problem: what structures can be distinguished
using scatter plots and histograms (and persistence diagrams) alone?

3.3 Noisy circle

We begin with the circle itself, and its tautological circle-valued coordinate.
We picked 200 points distributed along the unit circle. We added a uni-
form random variable from [0.0,0.4] to each coordinate. A Rips complex
was constructed in 0.07 seconds with maximal radius 0.5, resulting in 23475
simplices. The computation of cohomology finished in 0.03 seconds.

Parametrizing at 0.4 yielded a single coordinate function, which very
closely reproduces the tautological angle function. Parametrizing at 0.14
yielded several possible cocycles. We selected one of those with low persis-
tence; this produced a parametrization which ‘snags’ around a small gap in
the data.

See Figure 2] The left panel in each row shows the histogram of coordi-
nate values; the middle panel shows the correlation scatter plot against the
known angle function; the right panel displays the coordinate using color.
The high-persistence (‘global’) coordinate correlates with the angle func-
tion with topological degree 1. Variation in that coordinate is uniformly
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Fig. 2 Noisy circle. Persistence diagram (top). Global coordinate (middle row),
local coordinate (bottom row). In the coordinate rows: histogram of coordinate
values (left), correlation scatter plot against known angle function (middle), in-
ferred coordinate in color (right).

distributed, as seen in the histogram. In contrast, the low-persistence (‘lo-
cal’) coordinate has a spiky distribution.

3.4 Trefoil torus knot

Another example with circle topology: see Figure [3] We picked 400 points
distributed along the (2,3) torus knot on a torus with radii 2.0 and 1.0.
We jittered them by a uniform random variable from [0.0,0.2] added to
each coordinate. We generated a Rips complex in 0.11 seconds up to ra-
dius 1.0, acquiring 36936 simplices. We computed persistent cohomology
in 0.05 seconds. As expected, the inferred coordinate correlates strongly
with the known parameter with topological degree 1. The histogram shows
three ‘bulges’ corresponding to the three high-density regions of the sam-
pled curve, which occur when the curve approaches the central axis of the
torus.
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Fig. 3 Trefoil torus knot. Persistence diagram (left), correlation scatter plot of
inferred coordinate against known parametrization (middle), inferred coordinate
in color (right).
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Fig. 4 Images of a rotating cube. Histogram of coordinate values (left); scatter
plot against known angle function (middle); a selection of images matched to
recovered circle coordinate (right).

3.5 Rotating cube

For a more elaborate data set with S'-topology, we generated a sequence
of 657 rendered images of a colorful cube rotating around one axis. Each
image was regarded as a vector in the Euclidean space R2002003 From this
data we built a witness complex with 50 landmark points and constructed
a single circular coordinate. Interpolating the resulting function linearly
between the landmarks gave us coordinates for all the points in the family.

See Figure {4l The frequency distribution is comparatively smooth (by
which we mean that there are no large spikes in the histogram), which indi-
cates that the coordinate does not have large static regions. The correlation
plot of the inferred coordinate against the original known sequence of the
cube images shows a correlation with topological degree 1. We show the
progression of the animation on an evenly-spaced sample of representative
points around the circle.

3.6 Pair of circles

See Figure [5] for these two examples.
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Fig. 5 Two conjoined circles (left); two disjoint circles (right). In each case we
show the persistence diagram (top left), the two inferred coordinates (right col-
umn), the correlation scatter plot (bottom left).

Conjoined circles: we picked 400 points distributed along circles in the
plane with radius 1 and with centres at (+1,0). The points were then jit-
tered by adding noise to each coordinate taken uniformly randomly from
the interval [0.0,0.3]. A Rips complex was constructed in 0.26 seconds with
maximal radius 0.5, resulting in 76763 simplices. The cohomology was com-
puted in 0.10 seconds.

Disjoint circles: 400 points were distributed on circles of radius 1 centered
around (£2,0) in the plane. These points were subsequently disturbed by a
uniform random variable from [0.0,0.5]. We constructed a Rips complex in
0.14 seconds with maximum radius 0.5, which gave us 45809 simplices. The
cohomology computation finished in 0.06 seconds.

In both cases, our method detects the two most natural circle-valued
functions. The scatter plots appear very similar. In the conjoined case, there
is some interference between the two circles, near their meeting point.

3.7 Torus

See Figure[6] We picked 400 points at random in the unit square, and then
used a standard parametrization to map the points onto a torus with inner
and outer radii 1.0 and 3.0. These were subsequently jittered by adding a
uniform random variable from [0.0,0.2] to each coordinate. We constructed
a Rips complex in 0.20 seconds with maximal radius v/3, resulting in 61522
simplices. The corresponding cohomology was computed in 0.09 seconds.

The two inferred coordinates at the radius 1.6 in this (fairly typical)
experimental run recover the original coordinates essentially perfectly: the
first inferred coordinate correlates with the meridional coordinate with topo-
logical degree —1, while the second inferred coordinate correlates with the
longitudinal coordinate with degree 1.
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(a) Persistence diagram (left); first inferred coordinate (middle); sec-
ond inferred coordinate (right).

Inferreds Original, Original,

Inferred;

Inferreds
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b) Correlation scatter pl()tS between the two original and two inferred
g
coordinates.

Fig. 6 Torus in R®.

When the original coordinates are unavailable, the important figure is
the inferred-versus-inferred scatter plot. In this case the scatter plot is fairly
uniformly distributed over the entire coordinate square (i.e. torus). In other
words, the two coordinates are decorrelated. This is slightly truer (and more
clearly apparent in the scatter plot) for the two original coordinates. Con-
trast these with the corresponding scatter plots for a pair of circles (con-
joined or disjoint).
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Fig. 7 Elliptic curve. Persistence diagram (left), correlation scatter plot between
the two coordinates (right).

3.8 Elliptic curve

See Figure [} For fun, we repeated the previous experiment with a torus
abstractly defined as the zero set of a homogeneous cubic polynomial in
three variables, interpreted as a complex projective curve. We picked 400
points at random on S° C C3, subject to the cubic equation

22y + vz + 222 = 0.

To interpret these as points in CP?, we used the projectively invariant
metric

d(&,m) = cos—(|€ - nl)

for all pairs &, € S°. With this metric we built a Rips complex in 0.08
seconds with maximal radius 0.15. The resulting complex had 44184 sim-
plices, and the cohomology was computed in 0.06 seconds. We found two
dominant coclasses that survived beyond radius 0.15, and we computed our
parametrizations at the 0.15 mark.

The resulting scatter plot quite clearly exhibits the decorrelation which
is characteristic of the torus.

3.9 Double torus

See Figure [0] We constructed a torus by generating 1600 points, uniformly
distributed in the unit square, and then using a standard parametrization of
the torus to wrap the points onto a torus surface with inner and outer radii
1.0 and 3.0. This was done twice, translating the two tori to place centers
5.7 apart from each other. The points, from each torus, that overrun the
intersection plane were dropped, resulting in a data set with 2885 points
distributed on a double torus. We build a Rips complex on these points in
12.97 seconds up to radius 1.25 which yields 1,879,805 simplices. The per-
sistent cohomology computation took 8.46 seconds, and identified the four
most significant cocycles. The resulting persistence diagram is in Figure
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Fig. 8 Double torus: persistence diagram.

The identified cocycles and the resulting parametrizations are not espe-
cially perspicuous; we present them in Figure On the other hand, by
taking linear combinations we can find a new basis of circular coordinate
functions whose correlation scatter-plot matrix is much more suggestive of
the double torus: see Figure

This particular coordinate transformation was obtained ‘by inspection’.
Open question: is there a systematic way to transform a basis of circular
coordinate functions so that the structure of the data is revealed as helpfully
as possible?

After the update, coordinates 1 and 2 are ‘coupled’, in the sense that
they are supported over the same subtorus of the double torus. The scatter
plot shows that the two coordinates appear to be completely decorrelated
except for a large mass concentrated at a single point. This mass corresponds
to the other subtorus, on which coordinates 1 and 2 are essentially constant.
A similar discussion holds for coordinates 3 and 4.

The uncoupled coordinate pairs (1,3), (1,4), (2,3), (2,4) produce scatter
plots reminiscent of two conjoined circles.

4 Discussion

Although our procedure works well in these simple examples, there are vari-
ous unanswered questions about the behaviour of this algorithm in general.
We discuss these now.

DIOPHANTINE ALGEBRA

— When lifting from I, coefficients to Z coefficients, why does the ‘close to
zero’ heuristic work perfectly in the given examples? In fact, coefficients
of cocycles produced by the persistence algorithm appear to be almost
always 0, +1. What makes this happen?

— Are there efficient ways to repair an integer lift & of an Fp-cocycle oy,
when dia # 07 What about under special conditions, such as dya being
sparse?

— Are there a priori geometric estimates on the largest torsion prime in
H> (X;Z)? In other words, can one quantify the assertion “p-torsion is
rare”?
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(a) The four discovered coordinates 61,602, 03,04 and their matrix
of correlation scatter plots.

(b) Taking linear combinations for a geometrically more ‘natural’
basis of circular coordinates: ¢1 = 01, p2 = O2+03+04, p3 = 03, and
¢a = 01 4 04. The pairs ¢1, P2 and @3, P4 respectively parametrize
the left and right halves of the double torus.

Fig. 9 Double torus in R3.
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— The cohomology group H'(X;Z) is torsion-free, and hence isomorphic
to some Z". Are there efficient ways to compute an independent set of
generators?

GENERALIZED MULTIDIMENSIONAL SCALING (MDS)

— The real coordinates in classical MDS have an absolute scale, which can be
related to the metric structure on the input data. Circular coordinates,
on the other hand, have no absolute scale. Is there a meaningful way to
assign radius values to each circular coordinate, for instance to estimate
the longitudinal and meridional radii of a general torus?

— The methods presented in this paper will recover topologically indepen-
dent circle coordinates (since the generators of the persistence diagram
are by definition linearly independent elements of H'). Classical MDS,
similarly, recovers statistically independent real coordinates. Is there
some way to combine the two approaches to obtain mixed families of
real and circular coordinates? What is the appropriate notion of inde-
pendence?

HIGHER DIMENSIONS

— Can we apply similar methods to obtain sphere-valued coordinates, for
spheres S™ with n > 27 The simplest analogue of in 2 dimensions is

[X,CP>] ~ H*(X;Z)

where CP* can be thought of as S? with a sequence of attached disks
D* DS D8 ... in even dimensions. One can therefore define S?-valued
maps up to the 3-skeleton of X, which are homotopy-unique up to the
2-skeleton. Is there a tractable smoothing procedure analogous to the
harmonic smoothing used here for S'-maps?

Our hope is that the methods presented here are simply the first steps
in a larger, more ambitious theory of topological multidimensional scaling
and structure discovery.
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