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Abstract. The(apparent) contourof a smooth mapping from a2-manifold to the
plane,f : M → R

2, is the set of critical values, that is, the image of the points
at which the gradients of the two component functions are linearly dependent.
AssumingM is compact and orientable and measuring difference with theerosion
distance, we prove that the contour is stable.

1 Introduction

The most familiar setting of the problem studied in this paper is the view of a three-
dimensional, solid body. We only see its surface and only oneside at a time, but we get
cues about its shape from the curve of points at which the surface normal is orthogonal
to the viewing direction [17]. The view is the projection to aplane and its apparent
contour is the image of the mentioned curve under the projection. Common roughly
synonymous terms are fold, silhouette, outline, and profile. Only the first of these terms
has a precise meaning introduced by Whitney [20]. Specifically, he definesfold points
andcusp pointsthat admit parametrizations of the neighborhood such that the mapping
can locally be written asf(x1, x2) = (x2

1, x2) andf(x1, x2) = (x1(x
2
1 − x2), x2),

and he showed that these are the only kinds of critical pointsthat are stable under
infinitesimal perturbations. We will refer to them asdouble pointsandtriple pointsof
the mapping. A related concept is the Jacobi curve as introduced in [9]. This is the set of
critical points, and its image is the apparent contour. In computer graphics, the contour
of the projection of a surface is often used for artistic enhancements of displays [6, 7].
In the typical case, the computational cost of the contour issignificantly smaller than
that of the entire surface [13, 16]. This motivates its use inefficient rendering; see [15]
for a survey of algorithms generating contours. Additionalapplications are for shadow
calculations, occlusion testing, and the simplification ofsurface models [8, 19].

The main result in this paper is a quantitative contributionto the structural stability
of the apparent contour. This study began with Whitney’s seminal paper [20] which
originated the related fields of catastrophe theory [2] and singularity theory [14]. Look-
ing at smooth mappings of manifolds, these fields focus on thestructure of singularities
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and their stability under infinitesimal perturbations. In contrast to these studies, we al-
low for more severe perturbations and we quantify the changes in the contour. In a
nutshell, we prove that a small perturbation of the mapping of an orientable2-manifold
to the plane changes the apparent contour only slightly. This seems plausible but is
false for naive measurements of the distance between two contours. Indeed, even small
perturbations can introduce arbitrarily many creases, each delimited by arbitrarily long
contour lines. The crucial insight is that creases are thin,that is, they are delimited by
pairs of contour lines that run roughly parallel to each other at close distance. We thus
have two cases: creases that are thin in a technical sense that we will make precise
shortly, and contour lines that are close to contour lines ofthe unperturbed mapping.
This distinction is crucial in any effort to simplify the contour of a mapping in a way
that retains its essential character.

Outline. Section 2 explains the setting for our study. Section 3 introduces important
concepts. Section 4 presents our main result, a global statement of stability of the ap-
parent contour. Section 5 contains the proof. Section 6 concludes the paper.

2 The Setting

In this section, we describe the setting, namely generic, smooth mappings from an ori-
entable2-manifold to the plane.

The apparent contour.Instead of projections of surfaces, we consider the more general
setting of mappingsf : M → R

2, in which M is a compact, orientable2-manifold
without boundary. It may or may not be embedded inR

3. We assume the mapping is
smooth and satisfies a small number of requirements we need inthe proof of our result.
This includes that for most pointsx ∈ M, the derivative off at x, which we denote
asDf(x) : R

2 → R
2, is surjective. We call these theregular pointsof f . All other

points ofM arecritical pointsof f and their images arecritical values. A point in R
2

Fig. 1.The projection of the torus to the plane. The distance function defined by the marked value
in the plane is illustrated by showing one of its sublevel sets.



is a regular valueif it is not a critical value or, equivalently, if all its preimages are
regular points. We call the set of critical values the(apparent) contourof the mapping,
denoting it byContour(f). The adjective serves as a reminder that we are not talking
about a structural property of the2-manifold but rather of its mapping to the plane. We
refer to Figure 1 for an example. The vertical projection of the torus to the plane below
it has a contour that consists of two concentric circles. In contrast, the projection to the
drawing plane is more complicated, with the inner circle twisting up twice, forming a
triangle on the left and another one on the right. Two vertices of each triangle arecusps,
that is, values at which the contour comes to a sudden halt andreverses its direction.
The third vertex is acrossing, that is, a value at which the contour intersects itself.

Distance functions.Fixing a valuea ∈ R
2, we let fa : M → R be thedistance

functionthat maps every pointx to the Euclidean distance of its image froma, that is,
fa(x) = ‖f(x)− a‖2. In Figure 1, one such distance function is illustrated by showing
the value, the two points in its preimage, a disk around the value, and the preimage of
the disk. Thesublevel setof fa for thresholdr ≥ 0 is the set of points with function
value at mostr, denoted asMr(a) = f−1

a [0, r]. Writing Br(a) for the closed disk
with centera ∈ R

2 and radiusr, the sublevel set offa is the preimage of this disk,
Mr(a) = f−1(Br(a)). Following Morse theoretical ideas, we increaser and notice that
the sublevel set changes its topology only at critical values. To explore this, we apply
the chain rule to get the derivative offa at a pointx as the composition of the derivative
of f atx and the scalar product withu = f(x)− a. Writing Df(x) : R

2 → R
2 for the

former andσu : R
2 → R for the latter, we haveDfa(x) = σu ◦ Df(x) : R

2 → R.
The pointx is regular forfa if Dfa(x) is surjective and it is critical ifDfa(x) is the
zero function. Ifx is regular forf thenDf(x) is surjective, and unlessf(x) = a, this
implies thatDfa(x) is surjective and hencex is regular forfa. On the other hand, ifx
is critical for f then it may or may not be critical forfa but it will be critical for the
distance function defined by another value.

CRITICAL POINT LEMMA . A point x ∈ M is critical for f iff there exists a value
a 6= f(x) in R

2 such thatx is critical forfa.

Genericity. We aim at limiting the class of mappings to those with manageable prop-
erties. For reasons of exposition, we do not strive to make the class as large as possible
but rather large enough to be interesting. In particular, wesacrifice some generality to
avoid the need to explain homology groups before giving the proofs.

DEFINITION. Let M be a compact, orientable2-manifold without boundary. We call
a smooth mappingf : M→ R

2 genericif

(I) the distance function,fa, is tame for every valuea ∈ R
2;

(II) there are no critical points off beyond double and triple points;
(III) the apparent contour off has finitely many cusps and crossings.

Condition (I) means thatfa has only a finite number of critical values and every sublevel
set consists only of finitely many components with finitely many holes. Condition (II)
prohibits critical points other than the two simple types, fold points and cusp points.



Not allowing other, more complicated critical points is convenient and not a serious
restriction since the corresponding mappings are dense in the larger class of smooth
mappings [20]. Condition (III) implies the existence of a finite, smooth stratification of
the plane compatible with the contour. Specifically, withX

1 = Contour(f) andX
0 the

set of cusps and crossings, we have a decomposition∅ = X
−1 ⊆ X

0 ⊆ X
1 ⊆ X

2 = R
2

such that eachstratum, Si = X
i −X

i−1, is either empty or ani-dimensional manifold.
Calling the components of the strata thepiecesof the stratification, we have only a
finite number and each piece is smoothly embedded inR

2. We call the pieces inS2 the
chambersof the stratification.

3 The Concepts

In this section, we introduce the main concepts needed to give a precise statement of
our result.

Degree.An important step in our construction is the assessment of the shape of a com-
ponent in the sublevel set of a distance function. For this purpose, we use the standard
concept of degree, which we first define for the entire2-manifold. To begin, we orient
all sufficiently small, simple, closed curves inM in a consistent manner. This is possible
becauseM is orientable. Leta ∈ R

2 be a regular value andf(x) = a. A sufficiently
small, simple, closed curve going aroundx in M maps injectively to a closed curve go-
ing arounda in R

2. We count+1 if this curve goes arounda in a counterclockwise order
and−1 if it goes arounda in a clockwise order. Finally, we sum these numbers over all
preimages ofa and denote the result asdeg(f, a). Extending this definition to critical
values, we count0 for each double point and+1 or−1 for each triple point. Movinga
continuously from one value to another does not change this number. This is clear if we
stay inside the same chamber but also when we cross the contour, picking up or losing
two points whose contributions cancel each other. This impliesdeg(f, a) = deg(f, b)
for all a, b ∈ R

2, and it makes sense to call this value thedegreeof f , denoted as
deg(f). SinceM is compact, its image underf does not exhaustR2. The degree off
at a value outside the image vanishes, which impliesdeg(f) = 0.

Next, consider the closed diskBr(a) with centera ∈ R
2 and radiusr ≥ 0. As

mentioned earlier, the preimage of this disk is the sublevelset offa for thresholdr. Let
C be a component of this sublevel set andf |C : C → R

2 the restriction off to C. For
each valueb in Br(a), we getdeg(f |C , b) by summing the contributions over all points
in the preimage,f |C

−1
(b) = f−1(b) ∩ C. As before, this number is the same at all

values in the disk so we can call it thedegreeof f |C . However, the number may change
when we leave the disk so the degree is not necessarily zero.

Level sets and well function.We study the contour in terms of the family of preim-
ages of all values. For a given valuea ∈ R

2, we call the preimage thelevel set
of f at a. Equivalently, this is the zero set of the corresponding distance function,
f−1(a) = f−1

a (0). By Condition (I), this is a finite set of points inM. The central
concept in our approach is the health of these points. Considering the sublevel set,
Mr(a) = f−1

a [0, r], we wish to distinguish between components that necessarily map



to the entire disk and components that can be pushed off the disk with moderate effort.
We call a componentC of Mr(a) well if the degree off |C is non-zero andill if the
degree is zero. Forr = 0, each point in the level set forms its own component, which is
well if the point is regular or a cusp and ill if it is a double point. As we increaser, we
get a nested sequence of sublevel sets,Mr(a) ⊆ Ms(a) for all 0 ≤ r ≤ s < ∞. If the
interval [r, s] does not contain any critical value offa then the components ofMr(a)
grow continuously into those ofMs(a) without changing their degree and status. At
a simple critical value offa, we either encounter a new component or we merge two
old components into one. The newly formed component has vanishing degree and is
therefore ill from the start. When we merge two components, we add their degrees. The
status of the new component thus depends only on the status ofthe old components.
Specifically, merging a well and an ill component gives a wellcomponent, while merg-
ing two well or two ill components gives an ill component. There are also non-simple
critical values, where we encounter two or more critical points at the same time or we
encounter a cusp approaching it from its normal direction. In such a case, the change in
the level set can be understood as the composition of a few simple changes as described.

The history of a component in the nested sequence of sublevelsets is therefore
straightforward. If the component begins as a regular pointor a triple point then it starts
out well and falls ill later, at some critical value offa. We call this aterminal critical
value to distinguish it from others at which no component falls ill. If the component
begins as a double point then it is ill from the start. Once a component is ill, it does
not get well any more (except it can become part of another, well component). It thus
makes sense to introduce a functionϕ : M → R defined by mappingx to the terminal
critical value offa, with a = f(x), at which the component that containsx falls ill. We
call ϕ thewell functionof f andϕ(x) thewell thresholdof x. We haveϕ(x) = 0 iff x
is a double point andϕ(x) > 0 if x is a regular point or a triple point.

Well diagrams. Fixing a valuea ∈ R
2, we get a well threshold for each pointx ∈

f−1
a (0). We collect these thresholds to form a multiset of real numbers, called thewell

diagramof fa and denoted asDgm(fa). For most regular valuesa of f , this diagram
consists of an even number of positive thresholds that come in equal pairs. For each
pair, the two contributing points lie on patches facing opposite directions. A threshold
in Dgm(fa) is simpleif it is positive and occurs only twice. A non-trivial property of
the well diagram is its stability; see the Stability Theoremfor Well Diagrams in Section
5 but also [11]. To make this precise, leta, b ∈ R

2 and let0 ≤ u1 ≤ u2 ≤ . . . ≤ ul

and0 ≤ v1 ≤ v2 ≤ . . . ≤ vl be the thresholds in the well diagrams offa andfb, pos-
sibly after adding zeros to the shorter sequence so we get thesame length for both. The
mentioned theorem states that|ui−vi| is bounded from above by theL∞-difference be-
tween the two functions. Using the triangle inequality, we get‖fa − fb‖∞ ≤ ‖a− b‖2
and therefore

max
1≤i≤l

|ui − vi| ≤ ‖a− b‖2. (1)

In words, corresponding well thresholds change at most by the Euclidean distance be-
tween the values in the plane.



Surgery.The stability of the well diagram expressed in (1) provides some hope that the
well function defined earlier is continuous. This is indeed the case at points with simple
well thresholds. Similarly,ϕ is continuous at double points, where it is zero. However,
continuity is not guaranteed at points with positive but non-simple well thresholds. Let
a ∈ R

2 be a value andu > 0 a threshold that occurs at least four times inDgm(fa).
Equivalently,a is equidistant to at least two different values of the contour. Take for

bac

x4

x3

x2

x1

Fig. 2. Schematic cross-section of the twisted triangle in Figure 3. To make the well function
continuous, we cut atx1 andx3 and reglue the sides as indicated by the light and dark shading.

example a valuea somewhere in the interior of the bold, black segment connecting the
upper left cusp with the center of the twisted triangle in Figure 3. It has four points in
its preimage,x1, x2, x3, x4, indexed from front to back in the picture. Figure 2 shows
a section of the configuration, crossing the black, bold segment ata. These four points
have four identical well thresholds. For a valueb to the right ofa, the top (front) two
points in the preimage have a small well threshold, while fora valuec to the left ofa,
the middle two points have a small well threshold. The other preimages ofb andc have
a large well threshold. As we move fromb to c, we observe a jump ofϕ at x1 andx3.
The same jump occurs along the entire length of the black, bold segment. We remedy
the discontinuity by cutting along the segment and regluingthe sides as necessary to
get continuity. In particular, the surfaces to the left ofx1 and to the right ofx3 are glued
and so are the surfaces to the right ofx1 and to the left ofx3.

Branch points. Even more interesting is what happens at the center,a, of the twisted
triangle, the lower right endpoint of the bold segment in Figure 3. It has three closest
values on the contour. We study the structure by going arounda in a counterclockwise
circle and drawing the well diagrams as we go. Each valueb on this circle has four
preimages,y1, y2, y3, y4, indexed from front to back, as before. Growing the disk cen-
tered atb, we get a tree that describes how the components of the preimage merge until
only one component remains. All four components start out well and fall ill in pairs
during the process. This is illustrated in Figure 3, where well components are repre-
sented by bold branches in the trees and their falling ill is marked by shaded dots. As
discussed earlier, there is a switch betweeny1 andy3 when we cross the bold segment.
Symmetrically, there is a switch betweeny2 andy4 when we cross the segment con-
necting the lower cusp with the center of the triangle. The switches imply that we have



Fig. 3. Enlarged view of the twisted triangle to the left of the hole in the torus in Figure 1. The
trees sketch the health histories of the points in the level sets at the marked values.

to go around the circle twice to return to the original configuration. In other words,
the surgery along the bold segment creates abranch pointat the center of the trian-
gle, that is, a point with a disk neighborhood that covers theneighborhood ofa ∈ R

2

twice. Using complex numbers to parametrize the neighborhood of a, the map to the
neighborhood of the branch point can locally be written asz 7→ z2/‖z‖.

We note that the situation leading to the creation of the branch point reminds us of
the concept of a ring species in biology; see e.g. [12]. Locally, at a valueb, we seem
to have two distinct species,y1 andy3, which we discover to be the same if we take a
more global view of the situation.

Summary.Using the distance function defined for a valuea ∈ R
2, we have defined well

thresholds for the pointsx ∈ f−1(a), and by exhausting all values in the plane, we have
constructed a well function,ϕ : M → R. Similar to the elevation function defined in
[1], the well function is continuous almost everywhere but not necessarily everywhere.
The stability of the well diagram implies that we can do surgery to changeM to a
2-manifold with boundary,Φ, on which the well function is continuous. Specifically,
we cutM along the curve of critical points off . Doing so, we double every point to
form the boundary of the2-manifold with boundary. In addition, we cut and reglue
along select curves originating at triple points. When we cut, we double the points and
when we glue, we identify points in pairs. The two operationschange the topology but
cancel each other’s effect on the multiplicity of points in the interior of the cut lines.
Each such line starts at the third copy of a triple point (the first two copies are part of
the boundary) and either ends at the third copy of another triple point or at a branch
point. For reasons that will become clear later, we keep eachbranch point as two points
with indistinguishable neighborhoods. The result is a non-Hausdorff2-manifold with
boundary,Φ, and a continuous well function,ϕ : Φ→ R. It vanishes along the boundary
and is positive everywhere else.



4 The Result

In this section, we compare two mappings of the same2-manifold and relate the dif-
ference between the contours to the difference between the mappings. We have two
statements of stability. The first is straightforward and leads up to the second statement,
our main result.

Silhouette stability. Thesilhouetteof a mappingf : M → R
2 is the boundary of the

image,Sil(f) = bd im f . Thinking of the image as the foreground and its complement
as the background, the silhouette is the subset of the contour that separates foreground
from background. To compare the silhouette off with that of another mappingg : M→
R

2, we define thedilation of a setA ⊆ R
2 by a radiusε ≥ 0 as the set of points inR2

at distance at mostε from some point inA. We denote this set byA+ε. TheHausdorff
or dilation distancebetween two setsA, B ⊆ R

2 is the infimum of the radii for which
each dilated set contains the other, un-dilated set,

D(A, B) = inf{ε | A ⊆ B+ε andB ⊆ A+ε}.

Settingε = maxx∈M ‖f(x)− g(x)‖2, we can be sure that every value in the image
of f has a value in the image ofg at distance at mostε. Together with the symmetric
relation, this implies our first result.

SILHOUETTE STABILITY LEMMA . The Hausdorff distance between the images off
andg is D(im f, im g) ≤ maxx∈M ‖f(x)− g(x)‖2.

This result is nothing short of trivial and allows for easy generalizations to higher di-
mensions, spaces that are not manifolds, and mappings that are neither generic nor
smooth. Note that the small Hausdorff distance between the images does not imply that
the two silhouettes are everywhere close. Indeed, it allowsfor small holes arbitrarily far
from the other silhouette.

Erosion distance.When we consider the entire contour then small holes cannot disap-
pear without a trace. To the contrary, little islands may appear or disappear anywhere
inside the foreground. This motivates us to define theerosionof a setA ⊆ R

2 by a
radiusε ≥ 0 is obtained by removing all points at distance at mostε from the com-
plement, that is,A−ε = R

2 − (R2 − A)+ε. Thecomplementary Hausdorffor erosion
distancebetween two setsA, B ⊆ R

2 is the infimum of the radii for which each eroded
set is contained in the other, un-eroded set,

E(A, B) = inf{ε | A−ε ⊆ B andB−ε ⊆ A}.

To extend the idea of erosion to the manifold, we note a relation between the well
function and the Euclidean distance in the image stated as the Well Function Lemma
in Section 5. Specifically,ϕ(x) is the distance betweena = f(x) and a locally closest
value ofContour(f). In other words,ϕ(x) measures how farx is from the relevant
portion of the boundary ofΦ, and this measure is taken in the image rather than on the
manifold. Eroding in the plane thus generalizes to taking a superlevel set of the well



function, that is,Φ−ε = ϕ−1[ε,∞). Letting g : M → R
2 be another generic, smooth

mapping andγ : Γ → R its well function after surgery, we defineΓ−ε = γ−1[ε,∞).
Theerosion distancebetweenΦ andΓ is then the infimum of the radiiε ≥ 0 for which
there are injectionsιf : Φ−ε → Γ andιg : Γ−ε → Φ such thatf(x) = g ◦ ιf (x) and
g(y) = f ◦ ιg(y) for all pointsx andy.

Contour stability. We are now ready to state the main result of this paper. It compares
the image of the eroded2-manifold,Φ−ε, usingf , with the image of the un-eroded
2-manifold,Γ , usingg, whereε = maxx∈M ‖f(x)− g(x)‖2, as before. Specifically, it
says the second mapping covers every value inR

2 at least as often as the first mapping.
The same is true if we exchangef andg.

CONTOUR STABILITY THEOREM. LetM be a compact, orientable2-manifold with-
out boundary andf, g : M → R

2 two generic, smooth mappings. Then the erosion
distance isE(Φ, Γ ) ≤ maxx∈M ‖f(x)− g(x)‖2.

We illustrate the result in Figure 4, which shows the familiar projection of the torus
superimposed on a perturbation of that projection. The perturbed mapping has two ex-
tra cusps connected to each other by two contour lines bounding a narrow lip-shaped
chamber. Cutting along the corresponding curves of critical points, we get a hole in the
surface, which we mend by cutting and regluing along two preimages of the medial line
between the two contour lines of the lips; see Figure 4. We getno additional branch
point but instead two new components, each covering the lipsonce.

Fig. 4. Superposition of the faint contour of the original mappingsof the torus and the clear
contour of the perturbed mapping.

At this juncture, we wish to draw attention to the fact we use injections in the def-
inition of the erosion distance. WriteEstrong(Φ, Γ ) for the strong version in which we
requireιf andιg be embeddings. Clearly,E(Φ, Γ ) ≤ Estrong(Φ, Γ ) so that substituting
the strong for the original version of erosion distance would give a stronger theorem.
Our proof does not support this strengthening. Although we currently do not have an
example that shows such a strengthening is impossible, we believe such examples exist.



5 The Proof

In this section, we present the proof of our main result, delegating the bulk of the un-
derlying algebraic construction to [11].

From components to homology groups.In lieu of the components in the sublevel set,
Mr(a), we consider the0-dimensional homology group of that set, which we denote
asFr(a) = H0(Mr(a)). With this formalization, we gain access to the concept of per-
sistence, as introduced in [10]. Particularly important isthe stability of the persistence
diagram, which was established for tame functions in [5]. Toexplain this result, we con-
sider again the nested sequence of sublevel sets,Mr(a) ⊆ Ms(a) for 0 ≤ r ≤ s <∞.
The inclusion between two sublevel sets induces a homomorphism between the corre-
sponding homology groups, giving rise to0→ . . .→ Fr(a)→ Fs(a)→ . . ., which we
call afiltration. Within it, a component isborn atFr(a) if the minimum function value
of its points isr, and itdies enteringFs(a) if it merges ats with another component
born before itself. The component is thus characterized by two numbers,r ands, which
we interpret as coordinates of a point in the plane. We sets =∞ if the component never
dies, so we need the extended plane,R̄

2 = [−∞,∞]2, to draw the points. Representing
each component that ever appears in the filtration, we get a multiset in R̄

2, which we
call thepersistence diagramof fa, denoted asDgm(fa). For a technical reason that
will be clear shortly, we add infinitely many copies of every point on the diagonal to the
diagram. Lettingg : M→ R

2 be a second mapping, we get a second distance function
and a second persistence diagram,Dgm(ga). Using the triangle inequality, it is easy
to show that the difference between the distance functions is ‖fa − ga‖∞ ≤ ε, where
ε = maxx∈M ‖f(x)− g(x)‖2. The mentioned stability result states that the bottleneck
distance between the persistence diagrams is bounded by thedifference between the
functions and therefore byε, that is,

W∞(Dgm(fa), Dgm(ga)) ≤ ε, (2)

see [5]. This means there is a perfect matching between the points in the two diagrams
such that theL∞-distance between matched points is at mostε. This result suffices to
derive a local statement of contour stability but not the stronger, global statement given
in Section 4.

Equivalence of definitions.To go the extra mile, we need to understand the subgroups
of the homology groups generated by the well components of the sublevel sets. We
refer to these as thewell groups, Ur(a) ⊆ Fr(a). These groups have been studied
in [11], where a different, more general definition is used. We reproduce this defini-
tion. Letting f, h : M → R

2 be two mappings, we callh a ρ-perturbationof f if
maxx∈M ‖h(x)− f(x)‖2 ≤ ρ. Note that the level set ofh at a is contained in the
sublevel set offa for radiusρ, that is,h−1(0) ⊆ Mρ(a). Hence, there is a homomor-
phism jh : H0(h

−1(a)) → Fρ(a). The image ofjh is a subgroup ofFρ(a) and so is
the common intersection of like images,

⋂
h im jh ⊆ Fρ(a), whereh ranges over all

ρ-perturbations off . Finally, we setρ = r + δ for a sufficiently smallδ > 0, and we
defineWr(a) as the largest subgroup ofFr(a) so its image inFρ(a) is contained in this
common intersection. The groupWr(a) is what [11] calls the well group ofMr(a). Our



aim here is to prove that for the setting in this paper, the twodefinitions give the same
groups.

WELL GROUPLEMMA . We haveUr(a) = Wr(a) for everya ∈ R
2 and everyr ≥ 0.

Proof. Fixing a ∈ R
2, we consider a pointx ∈ f−1(a), and for everyr ≥ 0, we letCr

be the component ofMr(a) that containsx.
CASE 1: Cr is well. We show that there existsδ > 0 such thatCr+δ ∩ h−1(a) 6= ∅

for everyρ-perturbationh of f , whereρ < r + δ. Specifically, we chooseδ < ϕ(x)− r
and note thatCr+δ is well. Consider the homotopy defined bygt(x) = (1 − t)f(x) +
th(x). Since the boundary ofCr+δ is too far from the center for its image to reacha,
the degree ofgt restricted toCr+δ at a remains unchanged. This degree is non-zero
for f = g0 and therefore also non-zero forh = g1. This implies thath−1(a) has a
non-empty intersection withCr+δ, as required.

CASE 2: Cr is ill. We show that for everyδ > 0 there exists aρ < r + δ and aρ-
perturbationh of f such thatCr ∩ h−1(a) = ∅. We use induction, following the change
in the sublevel set as we increase the radius. The first time wehave to prove something
is whenr = ϕ(x). At this radius, two well components merge to formCr, which is
now ill. Let y be a double point at which the two components touch; see Figure 5. The

a a

r

r + δ

y

y

Fig. 5. Left: two well components meeting aty. Right: the locally perturbed mapping in which
the two merged components avoida.

perturbation needs to movey beyonda, which it can do without changingf outside
Cr+δ. If there are two or more such double points, we move all of them beyonda the
same way. We chooseδ < s−ϕ(x), wheres is the next, larger critical value offa, and
call the resulting perturbationh0 : M→ R

2. It is good for all radiiϕ(x) ≤ r < s. Now
supposer = s and the growing component merges with another, ill component, forming
Cs. Let h1 : M → R

2 be the perturbation we constructed for this other component
when it fell ill at ϕ(x′) < s. Chooset such thatmax{ϕ(x), ϕ(x′)} < t < s. The two
perturbations differ from each other in two disjoint components ofMt. We can therefore
combine them to get a new perturbationh01 : M→ R

2 that agrees withf outside these
components, withh0 inside one, and withh1 inside the other component. The level
set ofh01 at a has empty intersection withCr, as required. The claimed relationship
follows by induction.



Stability of diagram. While being more complicated algebraically, the persistence dia-
gram of the well groups is simpler geometrically. Specifically, it is only 1-dimensional,
namely precisely the well diagram introduced in Section 3. The complete proof of the
stability of the well diagram is beyond the scope of this paper. The main idea is the re-
alization that the well groups for a given value form a zigzagmodule as defined in [4].
We sketch the construction of this module for the distance functionfa : M → R. By
definition of a generic, smooth mapping,fa has only finitely many critical values and
therefore only finitely many different homology groups. We index them consecutively
asFi. Let Ui ⊆ Fi be the corresponding well groups. A class may fall ill enteringUi+1

because it dies enteringFi+1 or because its image inFi+1 does not belong toUi+1. To
express the two cases algebraically, we letQi be the quotient formed by identifying all
classes inUi that differ only by a class that maps to zero inFi+1. Inserting the quotient
between the two well groups and connecting it with the obvious forward and backward
maps, we get the zigzag module,. . .← Ui → Qi ← Ui+1 → . . .. It is characterized by
its persistence diagram, like a filtration [4]. By the Well Group Lemma, this diagram is
precisely the well diagram described in Section 3. Stability does not follow from gen-
eral principles known yet but has been established in [11]. We skip the argument and
state the result.

STABILITY THEOREM FORWELL DIAGRAMS. Let f, g : M → R
2 be two generic,

smooth mappings. Then the bottleneck distance between the well diagrams of the dis-
tance functions at any valuea ∈ R

2 is W∞(Dgm(fa), Dgm(ga)) ≤ ‖fa − ga‖∞.

As mentioned earlier, the difference between the distance functions is bounded from
above byε = maxx∈M ‖f(x)− g(x)‖2.

Eroding the manifold. The stability of the well diagram justifies the surgery which
turnsM into a non-Hausdorff2-manifold with boundary,Φ, such that the well function,
ϕ : Φ → R, is continuous. We recall that for each pointx ∈ Φ, the value,ϕ(x), is the
well threshold ofx, that is, the terminal critical value offa, a = f(x), at which the
component ofx in the sublevel set falls ill. The well threshold has anothergeometric
interpretation. Lettingp : [0, 1] → Φ be a path on the manifold after surgery, we
consider its composition with the mapping,f ◦ p : [0, 1] → R

2, and writeℓ(p) for
the length of the image,f ◦ p[0, 1]. Taking the infimum over all paths that start atx and
end on the boundary,∂Φ, we getdist(x) = infp ℓ(p), thedistanceof a = f(x) from the
relevant portion of the contour. We note thatdist(x) is not necessarily the distance to
the nearest point on the contour but rather to the nearest point that affects the wellness
of the component ofx in the sublevel set offa.

WELL FUNCTION LEMMA . Let f : M → R
2 be a generic, smooth mapping and

ϕ : Φ→ R its well function. Thenϕ(x) = dist(x) for every pointx ∈ Φ.

PROOF. Let a = f(x). The pointx belongs to the zero set offa and its component in
the sublevel set falls ill atMϕ(x)(a). We writeR = ϕ(x) for short. The goal is to prove
R = dist(x). It is easy to see thatR ≤ dist(x). By the Stability Theorem for Well
Diagrams, we have|ϕ(x)− ϕ(y)| ≤ ‖fa − fb‖∞, and by the triangle inequality inR2,
we have‖fa − fb‖∞ ≤ ‖a− b‖2, whereb = f(y). It follows thatϕ(y) > 0 for all



pointsy with ‖a− f(y)‖2 < R. Sinceϕ is zero at the boundary, this implies that all
points of∂Φ are at Euclidean distance at leastR from a.

The more difficult direction is to provedist(x) ≤ R. To get a contradiction, we
assumeR < dist(x). Let q : [0, 1] → Φ be a path starting atq(0) = x with length
ℓ(q) = R, and lety = q(1) be its endpoint. It belongs to the componentC of MR(a)
that containsx. Sinceϕ(y) > 0, there is a positive radiusδ such that the component,
C′, of Mδ(b) that containsy is well, that is, the degree off restricted toC′ is non-zero.
SinceC andC′ overlap, their degrees are the same and we can form the union to get a
patch,C ∪ C′, that has the same degree still. We do the same for all pointsy reachable
from x by paths of lengthR, choosingδ > 0 smaller than the minimum well threshold
of any of these points. The result is a componentC′′ of MR+δ(a) that containsC and
the restriction off to C′′ has the same degree as the restriction toC. Hence,C′′ is well,
contradicting the choice ofR as the well value ofx.

Similarity of well functions. We have one more hurdle to clear, namely showing that
the well functions for similar mappings are similar. Letϕ : Φ → R andγ : Γ → R be
the well functions of the mappingsf, g : M→ R

2. We say thedifferencebetween them
is at mostr, denoted as‖ϕ− γ‖∞ ≤ r, if there are subspacesΦ0 ⊆ Φ andΓ0 ⊆ Γ that
contain all points with well thresholdr or larger and a bijectionι : Φ0 → Γ0 such that
f(x) = g ◦ ι(x) for everyx ∈ Φ0 andg(y) = f ◦ ι−1(y) for everyy ∈ Γ0. We derive
an upper bound on the difference between the two well functions.

HOMOTOPY LEMMA . Let f, g : M → R
2 be two generic, smooth mappings with

corresponding well functionsϕ : Φ→ R andγ : Γ → R. Then the difference between
the two well functions is‖ϕ− γ‖∞ ≤ maxx∈M ‖f(x)− g(x)‖2.

PROOF. We use the straight-line homotopy betweenf andg defined byft(x) = (1 −
t)f(x) + tg(x). All ft are smooth but not necessarily generic. Nevertheless, the well
diagram is defined for each distance function(ft)a. The Stability Theorem for Well Di-
agrams holds also for non-generic functions, implying thatthe points in these diagram
vary continuously witha andt. Specifically, the bottleneck distance between the dia-
grams of(ft)a and(ft′)a is bounded from above by|t− t′|ε, whereε is the maximum
Euclidean distance between corresponding images, as before.

To relateϕ with γ, we pick a pointϕ(x) in the well diagram offa = (f0)a. Initial-
izing the construction of a functionα : [0, 1] → R, we setα(0) = ϕ(x). Increasingt,
we continuously extendα until we either reacht = 1 or α vanishes. Whenever we reach
t = 1, we get a pointy ∈ Γ with α(1) = γ(y). Because the slope ofα is between±ε,
we have|ϕ(x)−γ(y)| ≤ ε. Collecting all pairs(x, y) generated by this process, we get
the bijectionι : Φ0 → Γ0 required by the claim. We getϕ(x) < ε for all x ∈ Φ − Φ0

becauseα vanishes before reachingt = 1. The construction of the functionsα can also
be done in the other direction, starting att = 1. Making sure we get the same pairs, we
also getγ(y) < ε for all y ∈ Γ − Γ0, as required.

Note that the paths connecting pointsx with y form a homeomorphism betweenΦ0

andΓ0, unless there are branch points in the graph of the homotopy connectingf and
g. In the absence of such branch points, we can substitute a homeomorphism for the



bijection in the definition of difference between well functions and embeddings for the
injections in the definition of erosion distance.

Finale. We are now in a position to tie up all ends and finish the proof ofthe Con-
tour Stability Theorem. Letϕ : Φ → R andγ : Γ → R be the well functions of
the mappingsf andg. By the Well Function Lemma, eroding the2-manifolds with
boundary is the same as taking superlevel sets of the well functions,Φ−r = ϕ−1[r,∞)
andΓ−r = γ−1[r,∞). By the Homotopy Lemma,‖ϕ− γ‖∞ ≤ ε. We recall that this
means there is a bijection,ι : Φ0 → Γ0, that is compatible with the two mappings.
Here,Φ0 ⊆ Φ andΓ0 ⊆ Γ contain all points with well thresholdε or larger, that is,

Φ−ε = ϕ−1[ε,∞) ⊆ Φ0;

Γ−ε = γ−1[ε,∞) ⊆ Γ0.

Restricting the bijection to the superlevel set ofϕ, we get the injectionιf : Φ−ε → Γ
defined byιf (x) = ι(x). Symmetrically, restricting it to the superlevel set ofγ, we
get the injectionιg : Γ−ε → Φ defined byιg(y) = ι−1(y). By construction,f(x) =
g ◦ ιf (x) for everyx ∈ Φ−ε andg(y) = g ◦ ιg(y) for everyy ∈ Γ−ε. It follows that
the erosion distance between the2-manifolds with boundary isE(Φ, Γ ) ≤ ε, which
completes the proof of the Contour Stability Theorem.

6 Discussion

An immediate application of our result is to the artistic representation of shapes using
contours. Instead of the entire contour, or perhaps the entire visible contour, we advo-
cate drawing only the portion that remains after a small erosion. A similar strategy may
be used to improve the efficacy of shape matching methods thatwork by comparing
contours [18].

The current statement of the Contour Stability Theorem is based on injections in the
definition of the erosion distance. It would be nice to replace them by embeddings, but
possible branch points in the homotopy as constructed in theproof of the Homotopy
Lemma would contradict their existence. Can we find an explicit example in which at
least one branch point occurs? Can we substitute piecewise embeddings for the injec-
tions?
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