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Abstract. The(apparent) contounf a smooth mapping from2manifold to the
plane,f : M — R2, is the set of critical values, that is, the image of the point
at which the gradients of the two component functions arealily dependent.
AssumingM is compact and orientable and measuring difference witbithgion
distance, we prove that the contour is stable.

1 Introduction

The most familiar setting of the problem studied in this papehe view of a three-
dimensional, solid body. We only see its surface and onlysiceat a time, but we get
cues about its shape from the curve of points at which thesenfiormal is orthogonal
to the viewing direction [17]. The view is the projection tgpkne and its apparent
contour is the image of the mentioned curve under the piiojpc€ommon roughly
synonymous terms are fold, silhouette, outline, and prdiitdy the first of these terms
has a precise meaning introduced by Whitney [20]. Spedifida¢ definedold points
andcusp pointghat admit parametrizations of the neighborhood such Heattapping
can locally be written a¥ (z1,22) = (22, 22) and f(z1,22) = (z1(2? — 22), 22),
and he showed that these are the only kinds of critical pdhrds are stable under
infinitesimal perturbations. We will refer to them dsuble pointsandtriple pointsof
the mapping. A related concept is the Jacobi curve as intexlin [9]. This is the set of
critical points, and its image is the apparent contour. iImgoter graphics, the contour
of the projection of a surface is often used for artistic emdeenents of displays [6, 7].
In the typical case, the computational cost of the contosigsificantly smaller than
that of the entire surface [13, 16]. This motivates its useffitient rendering; see [15]
for a survey of algorithms generating contours. Additicayaplications are for shadow
calculations, occlusion testing, and the simplificatioswfface models [8, 19].

The main result in this paper is a quantitative contributmthe structural stability
of the apparent contour. This study began with Whitney’sisahpaper [20] which
originated the related fields of catastrophe theory [2] amgliarity theory [14]. Look-
ing at smooth mappings of manifolds, these fields focus osttiueture of singularities
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and their stability under infinitesimal perturbations. bntrast to these studies, we al-
low for more severe perturbations and we quantify the chamgehe contour. In a
nutshell, we prove that a small perturbation of the mappfranarientable-manifold
to the plane changes the apparent contour only slightlys $aems plausible but is
false for naive measurements of the distance between twowan Indeed, even small
perturbations can introduce arbitrarily many creased) datimited by arbitrarily long
contour lines. The crucial insight is that creases are thit, is, they are delimited by
pairs of contour lines that run roughly parallel to each p#iteclose distance. We thus
have two cases: creases that are thin in a technical sense¢haill make precise
shortly, and contour lines that are close to contour linethefunperturbed mapping.
This distinction is crucial in any effort to simplify the ctmur of a mapping in a way
that retains its essential character.

Outline. Section 2 explains the setting for our study. Section 3 thices important
concepts. Section 4 presents our main result, a globahstatieof stability of the ap-
parent contour. Section 5 contains the proof. Section 6lades the paper.

2 The Setting

In this section, we describe the setting, namely generiogtsinmappings from an ori-
entable2-manifold to the plane.

The apparent contour.Instead of projections of surfaces, we consider the morergén
setting of mappingg : M — R2, in which M is a compact, orientab2-manifold
without boundary. It may or may not be embeddedih We assume the mapping is
smooth and satisfies a small number of requirements we nekd proof of our result.
This includes that for most points € M, the derivative off at x, which we denote
asDf(z) : R? — R? is surjective. We call these thegular pointsof f. All other
points of M arecritical pointsof f and their images areritical values A point in R?

Fig. 1. The projection of the torus to the plane. The distance fonaliefined by the marked value
in the plane is illustrated by showing one of its sublevet set



is aregular valueif it is not a critical value or, equivalently, if all its pneiages are
regular points. We call the set of critical values {apparent) contounf the mapping,
denoting it byContour(f). The adjective serves as a reminder that we are not talking
about a structural property of tt?emanifold but rather of its mapping to the plane. We
refer to Figure 1 for an example. The vertical projectionhaf torus to the plane below

it has a contour that consists of two concentric circlesdintiast, the projection to the
drawing plane is more complicated, with the inner circlestiig up twice, forming a
triangle on the left and another one on the right. Two vestifeeach triangle areusps

that is, values at which the contour comes to a sudden haltevsises its direction.
The third vertex is &rossing that is, a value at which the contour intersects itself.

Distance functions.Fixing a valuea € R?, we letf, : M — R be thedistance
functionthat maps every point to the Euclidean distance of its image framnthat is,
fa(z) = || f(x) — a||,. In Figure 1, one such distance function is illustrated byvghg
the value, the two points in its preimage, a disk around tteeyand the preimage of
the disk. Thesublevel sebf f, for thresholdr > 0 is the set of points with function
value at mostr, denoted adl,.(a) = f,*[0,r]. Writing B,.(a) for the closed disk
with centera € R? and radius-, the sublevel set of, is the preimage of this disk,
M, (a) = f~1(B,(a)). Following Morse theoretical ideas, we increasad notice that
the sublevel set changes its topology only at critical vald® explore this, we apply
the chain rule to get the derivative §f at a point: as the composition of the derivative
of f atz and the scalar product with= f(x) — a. Writing Df(z) : R? — R? for the
former ando,, : R? — R for the latter, we hav® f,(z) = o, o Df(x) : R? — R.
The pointz is regular forf, if Df,(x) is surjective and it is critical iD f,(z) is the
zero function. Ifz is regular forf thenD f(x) is surjective, and unles§z) = q, this
implies thatD f, (x) is surjective and henceis regular forf,. On the other hand, if

is critical for f then it may or may not be critical fof, but it will be critical for the
distance function defined by another value.

CRITICAL POINT LEMMA. A pointx € M is critical for f iff there exists a value
a # f(z) in R? such thatr is critical for f,,.

Genericity. We aim at limiting the class of mappings to those with manblgeprop-
erties. For reasons of exposition, we do not strive to magelfiss as large as possible
but rather large enough to be interesting. In particularsaeifice some generality to
avoid the need to explain homology groups before giving tioefs.

DEFINITION. LetM be a compact, orientabfemanifold without boundary. We call
a smooth mapping : M — R? genericif

() the distance functionf,, is tame for every value € R?;
(I)  there are no critical points of beyond double and triple points;
(1) the apparent contour of has finitely many cusps and crossings.

Condition (I) means thaf, has only a finite number of critical values and every sublevel
set consists only of finitely many components with finitelynydoles. Condition (I1)
prohibits critical points other than the two simple typesdfpoints and cusp points.



Not allowing other, more complicated critical points is genient and not a serious
restriction since the corresponding mappings are dendeeitatger class of smooth
mappings [20]. Condition (IIl) implies the existence of atén smooth stratification of
the plane compatible with the contour. Specifically, with= Contour(f) andX° the
set of cusps and crossings, we have a decompogitioiX ! C X C X! C X? = R?
such that eachtratum S¢ = X* — X‘~1, is either empty or airdimensional manifold.
Calling the components of the strata thiecesof the stratification, we have only a
finite number and each piece is smoothly embedd&FinNe call the pieces ii$? the
chamberf the stratification.

3 The Concepts

In this section, we introduce the main concepts needed ® a@jiprecise statement of
our result.

Degree.An important step in our construction is the assessmenteshiape of a com-
ponent in the sublevel set of a distance function. For thippse, we use the standard
concept of degree, which we first define for the erti@anifold. To begin, we orient
all sufficiently small, simple, closed curveslifiin a consistent manner. This is possible
becausé\l is orientable. Let: € R? be a regular value anfl(z) = a. A sufficiently
small, simple, closed curve going arounth M maps injectively to a closed curve go-
ing aroundz in R2. We countt1 if this curve goes aroundin a counterclockwise order
and—1 if it goes around: in a clockwise order. Finally, we sum these numbers over all
preimages ot and denote the result dsg( f, a). Extending this definition to critical
values, we count for each double point angl1 or —1 for each triple point. Moving
continuously from one value to another does not change thigoer. This is clear if we
stay inside the same chamber but also when we cross the copitcking up or losing
two points whose contributions cancel each other. Thisigspkg(f,a) = deg(f,b)
for all a,b € R?, and it makes sense to call this value thegreeof f, denoted as
deg(f). SinceM is compact, its image undgrdoes not exhaud?. The degree of
at a value outside the image vanishes, which implieg f) = 0.

Next, consider the closed disk,(a) with centera € R? and radius- > 0. As
mentioned earlier, the preimage of this disk is the sublestbff, for threshold-. Let
C be a component of this sublevel set gfid : C — R? the restriction off to C. For
each valué in B, (a), we getdeg(f|c,b) by summing the contributions over all points
in the preimagef|c~"(b) = f~'(b) N C. As before, this number is the same at all
values in the disk so we can call it tdegreeof f|-. However, the number may change
when we leave the disk so the degree is not necessarily zero.

Level sets and well function.We study the contour in terms of the family of preim-
ages of all values. For a given value € R2, we call the preimage thievel set
of f at a. Equivalently, this is the zero set of the correspondingadise function,
f~Y(a) = f;71(0). By Condition (I), this is a finite set of points ibl. The central
concept in our approach is the health of these points. Ceriagl the sublevel set,
M, (a) = f,;1[0,7], we wish to distinguish between components that necegsasp



to the entire disk and components that can be pushed off gkendih moderate effort.
We call a component’ of M,.(a) well if the degree off |- is non-zero andll if the
degree is zero. For = 0, each point in the level set forms its own component, which is
well if the point is regular or a cusp and ill if it is a doubleipb As we increase, we

get a nested sequence of sublevel deisia) C M;(a) forall 0 < r < s < oo. Ifthe
interval [r, s] does not contain any critical value ¢f then the components &, (a)
grow continuously into those d¥l,(a) without changing their degree and status. At
a simple critical value off,, we either encounter a new component or we merge two
old components into one. The newly formed component hasharg degree and is
therefore ill from the start. When we merge two componengsadd their degrees. The
status of the new component thus depends only on the stathe @id components.
Specifically, merging a well and an ill component gives a welhponent, while merg-
ing two well or two ill components gives an ill component. Taare also non-simple
critical values, where we encounter two or more criticahp®at the same time or we
encounter a cusp approaching it from its normal directinrsuch a case, the change in
the level set can be understood as the composition of a feplesichanges as described.

The history of a component in the nested sequence of subdetelis therefore
straightforward. If the component begins as a regular pwiattriple point then it starts
out well and falls ill later, at some critical value ¢f. We call this aterminal critical
valueto distinguish it from others at which no component falls lillthe component
begins as a double point then it is ill from the start. Once mponent is ill, it does
not get well any more (except it can become part of anothdt,aeenponent). It thus
makes sense to introduce a functipn M — R defined by mapping to the terminal
critical value off,, with a = f(z), at which the component that containfalls ill. We
call ¢ thewell functionof f andy(x) thewell thresholdof z. We havep(z) = 0 iff
is a double point ang(z) > 0 if « is a regular point or a triple point.

Well diagrams. Fixing a valuea € R?, we get a well threshold for each pointe
£.71(0). We collect these thresholds to form a multiset of real nuszlled thevell
diagramof f, and denoted aBgm/( f,). For most regular valuesof f, this diagram
consists of an even number of positive thresholds that consgjual pairs. For each
pair, the two contributing points lie on patches facing ogfeodirections. A threshold
in Dgm( f,,) is simpleif it is positive and occurs only twice. A non-trivial proggrof
the well diagram is its stability; see the Stability TheofemWell Diagrams in Section
5 but also [11]. To make this precise, leth € R? and let0 < u; < us < ... <
and0 < v; < ve < ... < v be the thresholds in the well diagramsfafand f3, pos-
sibly after adding zeros to the shorter sequence so we gsathe length for both. The
mentioned theorem states that— v;| is bounded from above by the, -difference be-
tween the two functions. Using the triangle inequality, vee|gf, — fu . < [la — b,
and therefore

T — b,
g%luz vi| < a bHQ 1)

In words, corresponding well thresholds change at most gyEticlidean distance be-
tween the values in the plane.



Surgery. The stability of the well diagram expressed in (1) providase hope that the
well function defined earlier is continuous. This is indeleel ¢ase at points with simple
well thresholds. Similarlyy is continuous at double points, where it is zero. However,
continuity is not guaranteed at points with positive but+simple well thresholds. Let

a € R? be a value and > 0 a threshold that occurs at least four timeDigm( f,,).
Equivalently,a is equidistant to at least two different values of the contdake for

Fig. 2. Schematic cross-section of the twisted triangle in Figuré@Bmake the well function
continuous, we cut at; andzs and reglue the sides as indicated by the light and dark shadin

example a value somewhere in the interior of the bold, black segment conmgtihe
upper left cusp with the center of the twisted triangle inUfeg3. It has four points in
its preimageg, x2, r3, x4, indexed from front to back in the picture. Figure 2 shows
a section of the configuration, crossing the black, bold ssgrata. These four points
have four identical well thresholds. For a valuto the right ofa, the top (front) two
points in the preimage have a small well threshold, whilesforluec to the left ofa,
the middle two points have a small well threshold. The otlieinpages ob andc have

a large well threshold. As we move frobrto ¢, we observe a jump af atz; andxzs.
The same jump occurs along the entire length of the blackl seyment. We remedy
the discontinuity by cutting along the segment and regldirggsides as necessary to
get continuity. In particular, the surfaces to the left:gfand to the right o3 are glued
and so are the surfaces to the rightrefand to the left ofcs.

Branch points. Even more interesting is what happens at the centeaf the twisted
triangle, the lower right endpoint of the bold segment inuf@3. It has three closest
values on the contour. We study the structure by going araund counterclockwise
circle and drawing the well diagrams as we go. Each valoe this circle has four
preimagesyi, y2, ys, y4, indexed from front to back, as before. Growing the disk cen-
tered at, we get a tree that describes how the components of the pyeimarge until
only one component remains. All four components start odt are fall ill in pairs
during the process. This is illustrated in Figure 3, wherd s@mponents are repre-
sented by bold branches in the trees and their falling ill skad by shaded dots. As
discussed earlier, there is a switch betwgeandys when we cross the bold segment.
Symmetrically, there is a switch betwegn andy, when we cross the segment con-
necting the lower cusp with the center of the triangle. Thigchwes imply that we have



Fig. 3. Enlarged view of the twisted triangle to the left of the haiehe torus in Figure 1. The
trees sketch the health histories of the points in the lestsl &t the marked values.

to go around the circle twice to return to the original confagion. In other words,
the surgery along the bold segment creatésamch pointat the center of the trian-
gle, that is, a point with a disk neighborhood that coversrtiighborhood of, € R?
twice. Using complex numbers to parametrize the neighbmdtod a, the map to the
neighborhood of the branch point can locally be written as 22/||z||.

We note that the situation leading to the creation of the dirgooint reminds us of
the concept of a ring species in biology; see e.g. [12]. Ugcat a valueb, we seem
to have two distinct specieg; andys, which we discover to be the same if we take a
more global view of the situation.

Summary. Using the distance function defined for a value R?, we have defined well
thresholds for the points € f~!(a), and by exhausting all values in the plane, we have
constructed a well functiony, : Ml — R. Similar to the elevation function defined in
[1], the well function is continuous almost everywhere bot mecessarily everywhere.
The stability of the well diagram implies that we can do suyge changeM to a
2-manifold with boundary®, on which the well function is continuous. Specifically,
we cutM along the curve of critical points of. Doing so, we double every point to
form the boundary of th@-manifold with boundary. In addition, we cut and reglue
along select curves originating at triple points. When we we double the points and
when we glue, we identify points in pairs. The two operationange the topology but
cancel each other’s effect on the multiplicity of points lire tinterior of the cut lines.
Each such line starts at the third copy of a triple point (th& fivo copies are part of
the boundary) and either ends at the third copy of anothgletpoint or at a branch
point. For reasons that will become clear later, we keep beainch point as two points
with indistinguishable neighborhoods. The result is a kausdorff2-manifold with
boundary®, and a continuous well functiop,: ¢ — R. It vanishes along the boundary
and is positive everywhere else.



4 The Result

In this section, we compare two mappings of the s@mmeanifold and relate the dif-
ference between the contours to the difference between #ppimgs. We have two
statements of stability. The first is straightforward aratie up to the second statement,
our main result.

Silhouette stability. The silhouetteof a mappingf : M — R? is the boundary of the
image,Sil(f) = bdim f. Thinking of the image as the foreground and its complement
as the background, the silhouette is the subset of the cotitauseparates foreground
from background. To compare the silhouette ofith that of another mapping: M —

R2, we define thalilation of a set4d C R? by a radiug > 0 as the set of points iR?

at distance at mostfrom some point ind. We denote this set by ™. TheHausdorff

or dilation distancebetween two setd, B C R? is the infimum of the radii for which
each dilated set contains the other, un-dilated set,

D(A,B) = inf{e| AC B andB C A*¢}.

Settinge = max,em || f(z) — g(x)|,, we can be sure that every value in the image
of f has a value in the image gfat distance at most Together with the symmetric
relation, this implies our first result.

SILHOUETTE STABILITY LEMMA. The Hausdorff distance between the images of
andg is D(im f,im g) < maxgewm || f(z) — g(2)]],.

This result is nothing short of trivial and allows for easynggalizations to higher di-
mensions, spaces that are not manifolds, and mappings rihateither generic nor
smooth. Note that the small Hausdorff distance betweemtlhgés does not imply that
the two silhouettes are everywhere close. Indeed, it alfowsmall holes arbitrarily far

from the other silhouette.

Erosion distance.When we consider the entire contour then small holes cansapd
pear without a trace. To the contrary, little islands mayesgppr disappear anywhere
inside the foreground. This motivates us to definedhesionof a setA C R? by a
radiuse > 0 is obtained by removing all points at distance at moftom the com-
plement, thatisA—¢ = R? — (R? — A)*¢. Thecomplementary Hausdorfir erosion
distancebetween two setd, B C R? is the infimum of the radii for which each eroded
set is contained in the other, un-eroded set,

E(A,B) = inf{e| A~ C BandB~° C A}.

To extend the idea of erosion to the manifold, we note a malietween the well
function and the Euclidean distance in the image statedea¥Wl Function Lemma
in Section 5. Specificallyp(z) is the distance between= f(z) and a locally closest
value of Contour(f). In other words(z) measures how far is from the relevant
portion of the boundary ob, and this measure is taken in the image rather than on the
manifold. Eroding in the plane thus generalizes to taking@esevel set of the well



function, that is@—¢ = p~![e, c0). Lettingg : Ml — R? be another generic, smooth
mapping andy : I" — R its well function after surgery, we definé== = v~ 1[e, ).
Theerosion distanceetweend and!" is then the infimum of the radii > 0 for which
there are injections; : $=° — ' and, : I'"° — & such thatf(z) = g o ¢s(x) and
g(y) = f o 14(y) for all pointsz andy.

Contour stability. We are now ready to state the main result of this paper. It coag
the image of the erode2tmanifold, ®~¢, using f, with the image of the un-eroded
2-manifold,I", usingg, wheres = max,cwm || f(z) — g(2)| 5, as before. Specifically, it
says the second mapping covers every valiR?iat least as often as the first mapping.
The same is true if we exchangendg.

CONTOUR STABILITY THEOREM. LetM be a compact, orientablemanifold with-
out boundary and¢f,g : M — R? two generic, smooth mappings. Then the erosion
distance isE(®, I') < maxgewm || f(x) — g(2)]|5-

We illustrate the result in Figure 4, which shows the famifaojection of the torus
superimposed on a perturbation of that projection. Theupeed mapping has two ex-
tra cusps connected to each other by two contour lines bogradnarrow lip-shaped
chamber. Cutting along the corresponding curves of ctifioits, we get a hole in the
surface, which we mend by cutting and regluing along tworpagjes of the medial line
between the two contour lines of the lips; see Figure 4. Wengetdditional branch
point but instead two new components, each covering theligs.

Fig. 4. Superposition of the faint contour of the original mappimfshe torus and the clear
contour of the perturbed mapping.

At this juncture, we wish to draw attention to the fact we ugedtions in the def-
inition of the erosion distance. WritB;,.n. (¥, I") for the strong version in which we
requirery and:, be embeddings. Clearl¥ (2, I') < Egirong (P, I') SO that substituting
the strong for the original version of erosion distance wlagilve a stronger theorem.
Our proof does not support this strengthening. Although weently do not have an
example that shows such a strengthening is impossible, isvbsuch examples exist.



5 The Proof

In this section, we present the proof of our main result, gitieg the bulk of the un-
derlying algebraic construction to [11].

From components to homology groupsln lieu of the components in the sublevel set,
M., (a), we consider thé@-dimensional homology group of that set, which we denote
asF,.(a) = Ho(M,.(a)). With this formalization, we gain access to the concept of pe
sistence, as introduced in [10]. Particularly importarthis stability of the persistence
diagram, which was established for tame functions in [5eXplain this result, we con-
sider again the nested sequence of sublevelB&t&;) C M (a) for0 <r < s < co.
The inclusion between two sublevel sets induces a homon=rghetween the corre-
sponding homology groups, giving risede— ... — F.(a) — Fs(a) — ..., which we
call afiltration. Within it, a componenti®ornatF, (a) if the minimum function value

of its points isr, and itdies enteringF;(a) if it merges ats with another component
born before itself. The component s thus characterizeavbynumbersy ands, which

we interpret as coordinates of a point in the plane. Wa setx if the component never
dies, so we need the extended pldRe = [—oo, 00]?, to draw the points. Representing
each component that ever appears in the filtration, we getlisetuin R2, which we
call the persistence diagrarof f,, denoted a®gm(f,). For a technical reason that
will be clear shortly, we add infinitely many copies of evenjn on the diagonal to the
diagram. Lettingy : M — R? be a second mapping, we get a second distance function
and a second persistence diagrddam(g,). Using the triangle inequality, it is easy
to show that the difference between the distance funct®fig. — g.| ., < €, where

e = maxzem || f(z) — g(x)||,. The mentioned stability result states that the bottleneck
distance between the persistence diagrams is bounded lmjffisence between the
functions and therefore ky; that is,

Weo(Dgm(fa), Dgm(gs)) < e, )

see [5]. This means there is a perfect matching between théspo the two diagrams
such that thd. . -distance between matched points is at mosthis result suffices to
derive a local statement of contour stability but not thersger, global statement given
in Section 4.

Equivalence of definitions.To go the extra mile, we need to understand the subgroups
of the homology groups generated by the well componentsefttiblevel sets. We
refer to these as theell groups U..(a) C F,.(a). These groups have been studied
in [11], where a different, more general definition is usee kproduce this defini-
tion. Letting f,h : M — R? be two mappings, we calt a p-perturbationof f if
maxgem ||h(z) — f(z)|l, < p. Note that the level set ot at a is contained in the
sublevel set off, for radiusp, that is,,='(0) C M,(a). Hence, there is a homomor-
phismj;, : Ho(h~'(a)) — F,(a). The image ofj, is a subgroup of ,(a) and so is
the common intersection of like imag€s,, imj, C F,(a), whereh ranges over all
p-perturbations off. Finally, we setp = r + ¢ for a sufficiently smalb > 0, and we
defineW,.(a) as the largest subgroup Bf(a) so its image irF ,(a) is contained in this
common intersection. The grol, (a) is what [11] calls the well group @¥1,.(a). Our



aim here is to prove that for the setting in this paper, thedefinitions give the same
groups.

WELL GROUPLEMMA. We havel,.(a) = W,.(a) for everya € R? and every- > 0.

Proof. Fixing a € R?, we consider a point € f~!(a), and for every- > 0, we letC,
be the component dfl,. (a) that containg:.

CASE 1: C, is well. We show that there exisis> 0 such thatC,. s N h=1(a) # )
for everyp-perturbatiorh: of f, wherep < r + §. Specifically, we choosé < ¢(x) —r
and note tha€, 5 is well. Consider the homotopy defined by(z) = (1 —¢) f(x) +
th(x). Since the boundary af', s is too far from the center for its image to reach
the degree ofy; restricted toC,s ata remains unchanged. This degree is non-zero
for f = go and therefore also non-zero for= g;. This implies that:~!(a) has a
non-empty intersection witt, . 5, as required.

CAsSE 2: C, is ill. We show that for every > 0 there exists @ < r + ¢ and ap-
perturbatiorh of f such that’,, N h=1(a) = (). We use induction, following the change
in the sublevel set as we increase the radius. The first timeawe to prove something
is whenr = ¢(z). At this radius, two well components merge to fofth, which is
now ill. Let y be a double point at which the two components touch; see &fgLfhe

Fig. 5. Left: two well components meeting gt Right: the locally perturbed mapping in which
the two merged components avaid

perturbation needs to movebeyonda, which it can do without changing outside
C)+s. If there are two or more such double points, we move all oftibeyonda the
same way. We choose< s — ¢(x), wheres is the next, larger critical value ¢f,, and
call the resulting perturbatioly, : Ml — RZ2. Itis good for all radiip(z) < r < s. Now
suppose = s and the growing component merges with another, ill compgfeming
C,. Leth; : M — RR? be the perturbation we constructed for this other component
when it fell ill at p(2') < s. Choose such thatmax{¢(z), o(2’)} <t < s. The two
perturbations differ from each other in two disjoint compaots ofM,. We can therefore
combine them to get a new perturbatian : M — R? that agrees witlf outside these
components, withh, inside one, and witth; inside the other component. The level
set ofho; ata has empty intersection witly,., as required. The claimed relationship
follows by induction.



Stability of diagram. While being more complicated algebraically, the persistatia-
gram of the well groups is simpler geometrically. Specificat is only 1-dimensional,
namely precisely the well diagram introduced in Section 3 Tomplete proof of the
stability of the well diagram is beyond the scope of this papke main idea is the re-
alization that the well groups for a given value form a zigraadule as defined in [4].
We sketch the construction of this module for the distanecetion f, : M — R. By
definition of a generic, smooth mappingj, has only finitely many critical values and
therefore only finitely many different homology groups. Weex them consecutively
asF;. LetU; C F; be the corresponding well groups. A class may fall ill emgti;
because it dies enteririg,, or because its image i, does not belong tt, ;1. To
express the two cases algebraically, wedebe the quotient formed by identifying all
classes inJ; that differ only by a class that maps to zerdrin ;. Inserting the quotient
between the two well groups and connecting it with the obsifmuward and backward
maps, we get the zigzag module, — U; — Q; « U;+1 — .... Itis characterized by
its persistence diagram, like a filtration [4]. By the Welldap Lemma, this diagram is
precisely the well diagram described in Section 3. Stahildes not follow from gen-
eral principles known yet but has been established in [1E.sWRip the argument and
state the result.

STABILITY THEOREM FORWELL DIAGRAMS. Let f, g : M — RR? be two generic,
smooth mappings. Then the bottleneck distance betweendheliagrams of the dis-
tance functions at any valuec R? is W (Dgm(fo), Dgm(ga)) < || fa — gall -

As mentioned earlier, the difference between the distannetions is bounded from
above bye = max;em || f(2) — g(z),-

Eroding the manifold. The stability of the well diagram justifies the surgery which
turnsM into a non-Hausdorft-manifold with boundaryp, such that the well function,
¢ : & — R, is continuous. We recall that for each paint @, the valuep(x), is the
well threshold ofz, that is, the terminal critical value of,, « = f(z), at which the
component ofr in the sublevel set falls ill. The well threshold has anotheometric
interpretation. Lettingp : [0,1] — & be a path on the manifold after surgery, we
consider its composition with the mappinfo p : [0,1] — R2, and write/(p) for
the length of the imagef; o p[0, 1]. Taking the infimum over all paths that startzeand
end on the boundarg®, we getdist(x) = inf, {(p), thedistanceof a = f(z) from the
relevant portion of the contour. We note thitt (=) is not necessarily the distance to
the nearest point on the contour but rather to the nearest thait affects the wellness
of the component af in the sublevel set of,,.

WELL FUNCTION LEMMA. Let f : M — R? be a generic, smooth mapping and
¢ : @ — Rits well function. Thenp(z) = dist(x) for every point: € .

PROOF. Leta = f(x). The pointz: belongs to the zero set gf, and its component in
the sublevel set falls ill &Vl ) (a). We write R = ¢(x) for short. The goal is to prove
R = dist(x). It is easy to see thak < dist(x). By the Stability Theorem for Well
Diagrams, we havgp(z) — o(y)| < ||fa — foll,, @and by the triangle inequality iR?,
we have||fo — foll o < lla—b|l,, whereb = f(y). It follows thaty(y) > 0 for all



pointsy with |la — f(y)||, < R. Sincey is zero at the boundary, this implies that all
points ofo® are at Euclidean distance at le#sfrom a.

The more difficult direction is to provéist(z) < R. To get a contradiction, we
assumeR < dist(x). Letq : [0,1] — & be a path starting at(0) = x with length
{(q) = R, and lety = ¢(1) be its endpoint. It belongs to the componéhof Mg (a)
that containsc. Sincep(y) > 0, there is a positive radiussuch that the component,
C’, of M5 (b) that containg is well, that is, the degree gfrestricted ta”’ is non-zero.
SinceC andC’ overlap, their degrees are the same and we can form the unget &1
patch,C' U C’, that has the same degree still. We do the same for all pgirgachable
from x by paths of lengthR, choosingj > 0 smaller than the minimum well threshold
of any of these points. The result is a compon@fitof Mz s(a) that containg”' and
the restriction off to C” has the same degree as the restrictiofi tblence C” is well,
contradicting the choice ak as the well value of.

Similarity of well functions. We have one more hurdle to clear, namely showing that
the well functions for similar mappings are similar. ket # — R andy : I' — R be

the well functions of the mappings g : M — R2. We say thalifferencebetween them

is at mostr, denoted agy — 7|/, < r, if there are subspacdy C @ andl; C I" that
contain all points with well threshold or larger and a bijection: &5 — I, such that
f(x) = gou(x) for everyxr € &y andg(y) = f o~ !(y) for everyy € I,. We derive

an upper bound on the difference between the two well funstio

HoMOTOPYLEMMA. Let f,g : M — R? be two generic, smooth mappings with
corresponding well functions : # — R and~y : I’ — R. Then the difference between
the two well functions igj¢ — ||, < maxzem || f(z) — g()||5.

PROOF We use the straight-line homotopy betwefandg defined byf;(xz) = (1 —
t)f(x) + tg(x). All f; are smooth but not necessarily generic. Nevertheless, ¢fle w
diagram is defined for each distance functign),. The Stability Theorem for Well Di-
agrams holds also for non-generic functions, implying thatpoints in these diagram
vary continuously withu andt. Specifically, the bottleneck distance between the dia-
grams of(f;), and(f+ ), is bounded from above by — ¢'|¢, wheres is the maximum
Euclidean distance between corresponding images, asshefor

To relatey with ~, we pick a pointp(z) in the well diagram off, = (fo).. Initial-
izing the construction of a functiom : [0, 1] — R, we setw(0) = ¢(z). Increasing,
we continuously extend until we either reach = 1 or « vanishes. Whenever we reach
t =1, we get a poiny € I" with a(1) = v(y). Because the slope ofis betweente,
we havep(x) —v(y)| < e. Collecting all pairgz, y) generated by this process, we get
the bijection. : ¢, — I required by the claim. We get(z) < e forall z € ¢ — @,
becauser vanishes before reaching= 1. The construction of the functionscan also
be done in the other direction, starting:at 1. Making sure we get the same pairs, we
also gety(y) < eforally € I' — I, as required.

Note that the paths connecting pointsith iy form a homeomorphism betweén
and g, unless there are branch points in the graph of the homotopyectingf and
g. In the absence of such branch points, we can substitute @dmorphism for the



bijection in the definition of difference between well fuioets and embeddings for the
injections in the definition of erosion distance.

Finale. We are now in a position to tie up all ends and finish the proahefCon-
tour Stability Theorem. Lepp : & — R and~ : I" — R be the well functions of
the mappingsf andg. By the Well Function Lemma, eroding tfeemanifolds with
boundary is the same as taking superlevel sets of the wedtiturs,®~" = ¢~ 1[r, 00)
andl"™" = vy~ ![r, 00). By the Homotopy Lemmd]y — 7|| ., < . We recall that this
means there is a bijection,: &, — I, that is compatible with the two mappings.
Here, @y, C ® andl, C I" contain all points with well thresholdor larger, that is,

7 = ¢ [e,00) Po;
")/7 F().

r-= =

NN

'le,00)

Restricting the bijection to the superlevel setpfwe get the injectiony : ¢7° — I
defined by.s(z) = «(x). Symmetrically, restricting it to the superlevel setgfwe
get the injection, : I'~° — & defined by.,(y) = ¢~!(y). By construction f(z) =
gop(x) foreveryz € &7° andg(y) = g o 14(y) for everyy € I"~=. It follows that
the erosion distance between thenanifolds with boundary ig(®,I") < ¢, which
completes the proof of the Contour Stability Theorem.

6 Discussion

An immediate application of our result is to the artisticnegentation of shapes using
contours. Instead of the entire contour, or perhaps theeevisible contour, we advo-
cate drawing only the portion that remains after a smalliero#\ similar strategy may
be used to improve the efficacy of shape matching methodsnibidt by comparing
contours [18].

The current statement of the Contour Stability Theorem $gtan injections in the
definition of the erosion distance. It would be nice to repldem by embeddings, but
possible branch points in the homotopy as constructed iptbef of the Homotopy
Lemma would contradict their existence. Can we find an eit@i@ample in which at
least one branch point occurs? Can we substitute piecewibeddings for the injec-
tions?

References

1. P. K. AGARWAL, H. EDELSBRUNNER J. HARER AND Y. WANG. Extreme elevation on a
2-manifold. Discrete Comput. Geor36 (2006), 553-572.

2. V. 1. ARNOLD. Catastrophe Theory hird edition, Springer-Verlag, Berlin, Germany, 1992.

3. H. BLuM. A transformation for extracting new descriptors of shdpeviodels for the Per-
ception of Speech and Visual Foriw. Wathen-Dunn (ed.), MIT Press, Cambridge, Mas-
sachusetts, 362—380, 1967.

4. G.CaARLSSONANDV. DE SILVA . Zigzag persistence. Manuscript, Dept. Mathematics,-Stan
ford Univ., Stanford, California, 2008.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. D. COHEN-STEINER, H. EDELSBRUNNER AND J. HARER. Stability of persistence dia-

grams.Discrete Comput. Geor37 (2007), 103-120.

. F. CoLE, A. GOLOVINSKIY, A. LIMPAECHER, H. S. BARROS, A. FINKELSTEIN, T.

FUNKHOUSER AND S. RUSINKIEWICZ. Where do people draw linesAG&sRAPH Conf.
Proc.,ACM Trans. Graphic27 (2008), 1-11.

. D. DECARLO, A. FINKELSTEIN, S. RUSINKIEWICZ AND A. SANTELLA . Suggestive con-

tours for conveying shap&MC Trans. Graph22 (2003), 848—-855.

. F. DUGUET AND G. DRETTAKIS. Robust epsilon visibility. & GrRAPH Conf. Proc. ACM

Trans. Graphic1 (2002), 567-575.

. H. EDELSBRUNNER ANDJ. HARER. Jacobi sets of multiple Morse functions. In F. Cucker,

R. Devore and P. Olver (edsfpundations of Computational Mathematics, Minneapolis
2002 35-57, Cambridge University Press, 2004.

H. BEDELSBRUNNER D. LETSCHER ANDA. ZOMORODIAN. Topological persistence and
simplification.Discrete Comput. Geor28 (2002), 511-533.

H. EDELSBRUNNER D. MOROZOV AND A. PATEL. Quantifying transversality by measur-
ing the robustness of intersections. Manuscript, Dept. @dnSci., Duke Univ., Durham,
North Carolina, 2009.

D. J. mTUYAMA . Evolutionary BiologyThird edition, Sinauer Associates, 1998.

M. GLISSE AND S. LAZARD. An upper bound on the average size of silhouefbéscrete
Comput. Geon¥0 (2008), 241-257.

M. GOLUBITSKY AND V. GUILLEMIN . Stable Mappings and Their Singulariti€3pringer-
Verlag, New York, 1973.

T. ISENBERG B. FREUDENBERG N. HALPER, S. SCHLECHTWEG AND T. STROTHOTTE

A developer’s guide to silhouette algorithms for polygorraddels.IEEE Comput. Graph.
Appl.23(2003), 28-37.

L. KETTNER AND E. WELZzL. Contour edge analysis for polyhedron projectionsGler
ometric Modeling: Theory and Practic879-394, eds. W. Stral3er, R. Klein and R. Rau,
Springer-Verlag, 1996.

J. J. KOENDERINK. What does the occluding contour tell us about solid sh&eeCeption
13(1984), 321-330.

P. MN, J. CHEN AND T. FUNKHOUSER. A 2D sketch interface for a 3D model search
engine. $6GRAPH Technical Sketches (2002), 138.

P. V. \INDER, X. GU, S. J. @®RTLER, H. HOPPE ANDJ. SNYDER. Silhouette clipping.
SIGGRAPH Conf. Proc.Computer Graphic$2000), 327-334.

H. WHITNEY. On singularities of mappings of Euclidean space. |. Magpiof the plane to
the planeAnn. Math.62 (1955), 374-410.



