
Block-Parallel Data Analysis with DIY2
Dmitriy Morozov* Tom Peterka†

ABSTRACT

DIY2 is a programming model and runtime for block-parallel an-
alytics on distributed-memory machines. Its main abstraction is
block-structured data parallelism: data are decomposed into blocks;
blocks are assigned to processing elements (processes or threads);
computation is described as iterations over these blocks, and com-
munication between blocks is defined by reusable patterns. By
expressing computation in this general form, the DIY2 runtime is
free to optimize the movement of blocks between slow and fast
memories (disk and flash vs. DRAM) and to concurrently execute
blocks residing in memory with multiple threads. This enables
the same program to execute in-core, out-of-core, serial, parallel,
single-threaded, multithreaded, or combinations thereof. This paper
describes the implementation of the main features of the DIY2 pro-
gramming model and optimizations to improve performance. DIY2
is evaluated on complete analysis codes.

1 INTRODUCTION

The rapid growth of computing and sensing capabilities is gener-
ating enormous amounts of scientific data. Parallelism can reduce
the time required to analyze these data, and distributed memory
allows datasets larger than even the largest-memory nodes to be
accommodated. The most familiar parallel computing model in
distributed-memory environments is arguably data-parallel domain-
decomposed message passing. In other words, divide the input data
into subdomains, assign subdomains to processors, and communi-
cate between processors with messages. Complicating data-intensive
analysis, however, is the fact that it occurs in multiple environments
ranging from supercomputers to smaller clusters and clouds to scien-
tists’ workstations and laptops. Hence, we need to develop portable
analysis codes that are highly scalable on HPC architectures while
remaining accessible on smaller machines with far fewer cores and
memory capacity.

In HPC, the main challenge is that architectures evolve rapidly.
Locality and the cost of data movement dominate energy efficiency.
Supercomputers are already being designed with deeper memory/sto-
rage hierarchies and nonvolatile memory (NVM) that can be used
as burst buffers or extended memory near to compute nodes with
higher bandwidth and lower latency than traditional storage. For
example, burst buffers already exist in small prototype instances, and
next generation of supercomputers will include them in production.
Additional levels of fast/slow memory [2] and near/far disks create
opportunities while complicating algorithm design. A related issue
is that the number of cores is rapidly increasing; hundreds per node
is now the norm. Many-core architectures such as Intel Knight’s
Landing offer increased possibilities for parallelizing the part of the
problem that is currently in core.

Traditional data-parallel codes are written in MPI [14]. Designed
over twenty years ago for parallel computational science in Fortran
and C, MPI is an ideal runtime for executing distributed commu-
nication, but in our experience the level of abstraction is too low

*Lawrence Berkeley National Laboratory, dmitriy@mrzv.org
†Argonne National Laboratory, tpeterka@mcs.anl.gov

for productive programming of data analytics. Higher level data-
parallel models are needed that promote modularity and reuse of
frequently recurring design patterns. Modern, convenient design
combined with the proven performance of MPI can be attained by
building libraries on top of MPI. We have found that to enable scal-
able data analytics in a diverse architectural landscape, a library that
seamlessly integrates in-core parallel processing (both threading and
message passing) with data migration between main memory and
other levels of the memory/storage hierarchy is necessary.

DIY2 is our solution1 to this problem. DIY2 is a program-
ming model and runtime that allows the same program to execute
distributed-memory parallel and out-of-core data analysis. The in-
tegration of these two previously separate programming models is
particularly useful for scientists who wish to do some of the analysis
of large data sets from scientific computations in situ on a super-
computer and continue to do further processing on a smaller parallel
cluster or out-of-core on a workstation. The need to easily switch
between in-core, out-of-core, and mixed regimes consisting of pro-
cessing some fraction of blocks in-core (in parallel) while others
reside in NVM or storage is key to performance portability.

Even for applications that are strictly HPC, the ability to execute
out-of-core becomes desirable when running an analysis code in
situ with a simulation. While the memory size per core in next-
generation supercomputers will remain constant or will slightly
decrease, the collocation of simulation with analysis on the same
node accentuates the limits of memory: the simulation would like
to use as much of the memory as it can, and so would the analysis.
Analysis codes are often memory-bound; they may aggregate global
data from numerous subdomains, or the task itself may require a
large amount of memory to compute an intermediate result. For
example, to convert particles to a continuous density field, one may
want to compute a Voronoi tessellation first. The original particles
require tens of bytes per particle while the tessellation uses hundreds
of bytes per particle [21].

The key to our programming model is structuring the analysis pro-
gram into data-parallel blocks. Blocks are the units of shared- and
distributed-memory parallel computation, communication, and mi-
gration in the memory/storage hierarchy. Blocks and their message
queues are mapped onto processes and placed in memory/storage
by the DIY2 runtime. Building on the block abstraction, commu-
nication patterns and other algorithms can be developed once and
reused. Decomposing a problem in terms of block-parallelism (in-
stead of process-parallelism) enables migrating blocks during the
program execution between different locations in the hardware. This
is the main idea that lets us integrate in- and out-of-core program-
ming in the same model and change modes without touching the
source code. Until now, despite similarity in their design, implement-
ing the two types of algorithms required following very different
programming models; converting between in- and out-of-core im-
plementations was tantamount to rewriting the code. The same is
true for multithreading. Block-parallelism enables performing the
same operations on a block in one compute node, processor, core,
or thread. Block-parallelism also makes debugging easier: the same
program, with the same number of blocks, can be run on a single
process for debugging.

The contributions of this paper are a set of high-level program-
ming abstractions—block decomposition, block execution in pro-

1https://github.com/diatomic/diy2



cesses and threads, communication patterns over blocks, parallel
I/O—and high-level algorithms built on these abstractions. The pro-
gramming model is BSP-style alternation of compute-communicate
phases, formalized by DIY2’s API. Numerous open-source scientific
data analysis applications have already been released, and three of
these are featured in our evaluation here. This paper explains the
design of DIY2, describes how to write block-structured programs
to take advantage of these concepts, and gives an experimental eval-
uation of DIY2’s performance. Section 2 places our solution in the
context of other programming models. Section 3 explains the design
of DIY2. Section 4 shows results of experiments using DIY2 on
complete data analysis codes.

2 RELATED WORK

Our review of relevant work on data-parallel computing includes
block-based models, out-of-core algorithms, and other programming
models such as those based on MapReduce.

2.1 Data parallelism and block-structured abstractions
Many simulation [6, 13, 15], visualization, and analysis frame-
works [1, 7, 29, 33] are data-parallel, meaning each process executes
the same program on a different part of the data. There is, however,
a subtle but important difference between those parallel models and
ours. The distinction concerns the difference between the data sub-
domain (which we call a block) and the processing element (be it a
node, core, or thread) operating on the data (which we generically
call a process). In those examples and many others, processes and
blocks are equivalent; there is a one-to-one mapping between them,
and data-parallelism is actually process-parallelism. In MPI, for
example, messages are sent between process ranks, not blocks.

True data parallelism is decomposition of the global data domain
into blocks first and a mapping of blocks onto processes second.
The mapping need not be one-to-one. From the programmer’s stand-
point, operations are expressed on blocks, and all communication is
expressed as information flow between blocks (not processes). It is
the job of the runtime to map those instructions to code running on
a process and messages exchanged between processes. The starting
point of our work is DIY1 [28, 30], a C library that structures data
into blocks. It expects the computation to be organized in a bulk-
synchronous pattern, but does not enforce this structure through
programming convention. The users are expected to iterate over
the blocks one by one, using a for-loop, but nothing forces them to
do so. Accordingly, DIY1 is only able to provide helper functions
to simplify various communication patterns. It lacks threading and
out-of-core support.

In contrast, DIY2 enforces the BSP design by requiring that
blocks are processed through a callback function that it executes on
each block, followed by a communication phase, both explained in
the next section. It is this requirement that lets the library control
how the blocks are managed. During the computation phase, the
library moves the blocks in and out of core and processes them si-
multaneously using multiple threads. These are the key new features
of DIY2 compared to DIY1.

Other programming models that share some similarity with our
block-structured abstraction are Charm++, Legion, and Regent.
Charm++ [17] has a dynamic mapping between data objects and
processes (called chares) and between chares and physical processes.
In Legion [3], blocks are called logical regions, and the runtime
maps logical regions to physical resources. Regent [34] is a new lan-
guage and compiler for the Legion runtime, which results in shorter,
more readable code than the original Legion language.

2.2 Out-of-core and I/O-efficient algorithms
Many algorithms have been developed for specific applications run-
ning out-of-core. Vitter summarizes many of these in his survey of
out-of-core algorithms and data structures for sorting, searching, fast

Fourier transform, linear algebra, computational geometry, graphs,
trees, and string processing [40].

Thakur and Choudhary developed runtime support for out-of-
core multidimensional arrays [37] with an extended two-phase
method [36] that used collective I/O to access subarrays in stor-
age. The collective two-phase algorithm performed better than
independent access. The same algorithm was deployed in the PAS-
SION runtime [38] for collective I/O, a precursor to today’s MPI-IO
parallel I/O interface. The PASSION compiler was one part of
an out-of-core high-performance Fortran (HPF) system [35]. Bor-
dawekar and Choudhary [4] categorized communication strategies
for out-of-core arrays in HPF based on the associated I/O required
to execute the communication.

LaSalle and Karypis presented an out-of-core MPI runtime called
BDMPI (Big Data MPI) [19], intended as a drop-in replacement
for MPI. It launched more processes than available cores and used
POSIX message queues to block individual processes (by waiting on
a message not yet sent). When this happened, the OS virtual memory
mechanism moved the data from memory to swap space. Unfortu-
nately, this approach is not usable on IBM and Cray supercomputers
that have no virtual memory and do not allow more processes than
cores. Moreover, BDMPI implemented a small subset of the MPI
standard and lacked nonblocking, one-sided, and many collective
operations. Rather than replacing MPI, DIY2 is a C++ library built
on top of MPI, and so the user is free to use any MPI facilities in the
same code as DIY2.

Durand et al. [10] proposed I/O scheduling based on graph match-
ing and coloring. Modeling the set of clients (compute nodes) as one
side of a bipartite graph and the set of servers (disks) as the other
side, the resulting schedule of I/O transfers attempted to compute a
near-optimal schedule. It did so by maximizing the number of edges
between clients and servers in a phase, subject to the constraint that
no graph nodes have multiple edges, and by minimizing the number
of such phases.

In contrast to previous methods that optimized the execution of
storage accesses, Colvin et al. [8] proposed a language and compiler
that minimized the number of storage accesses issued by an out-
of-core program. Based on the C* language, the virtual C* (ViC*)
compiler reorganized loops that accessed out-of-core variables pri-
marily by fusing loops and recomputing data instead of reading it
from storage.

In addition to reorganizing loops, Kandemir et al. [18] also re-
organized file layouts to better match the loop structure in order to
optimize I/O without sacrificing in-core parallelism or introducing
additional communication. Brezany et al. [5] augmented the HPF
language with directives for out-of-core handling of arrays. The
augmented language and compiler, HPF+, executed data-parallel
loops out-of-core while reducing redundant I/O accesses. It did so
by reordering computations and hiding I/O latency by overlapping
I/O with computation. All of the previous methods considered only
loops over arrays. In contrast, DIY2 supports any general operations
(not limited to loop structures) on any general data structures (not
limited to arrays).

2.3 Data-intensive programming models

Programming models derived from MapReduce [9] built on the
Hadoop runtime are inherently out-of-core because communication
is based on files or TCP pipes between remote machines. Frame-
works such as Dryad [16], Pig [24], and Hive [39] use SQL and/or
MapReduce constructs to describe data processing tasks out-of-
core. While convenient for programming, such frameworks are
limited to data that can be expressed as key-value pairs and to pro-
cessing of loosely-coupled problems that are expressed as a global
reduction of embarrassingly parallel components. Thus far, neither
MapReduce nor its descendants—iterative Twister [11], streaming
CGL-MapReduce [12], and distributed shared memory Spark [41]—



Master

Block execution

Block loading

Assigner

Mapping blocks
to

processes

Decomposer

Comm. links

Decomposition

Communication

Global reduction

Local neighbor

I/O

Independent

Collective

Algorithms

K-d tree

Parallel sort

Data Movement

Analysis Algorithm

Application

OS / Runtime

Figure 1: Components of DIY2 and its place in the software stack,
helping to address the data movement challenge.

have been suited for HPC applications that demand highly scalable
complex communication.

3 DESIGN

We begin with a short example. After a brief discussion of the main
steps in the example, we explain the novel design points of DIY2
in greater detail. Figure 1 shows the different components of the
library.

3.1 Example
Listing 1 presents the typical structure of a DIY2 program. The
top-level DIY2 object is called master. Its main responsibility is
to keep track of the blocks of data. A single program can contain
multiple master instances corresponding to different types of data.
For example, a pipeline of several analyses, each requiring different
resources can be constructed in one program with a different master
object for each step. A master object is initialized with an MPI
communicator world and parameters that specify how many threads
to use, how many blocks to keep in memory at once, and where to
store blocks (and their message queues) that must be evicted from
memory.

All parameters other than the MPI communicator are optional: by
default, DIY2 uses a single thread and allows all blocks to live in
memory. The master is populated with blocks. Auxiliary facilities
can help determine block boundaries when the decomposition is a
regular lattice of blocks or a k-d tree; both are supported.

A typical execution phase is invoked by foreach(&foo), which
calls function foo() with every block stored in the master, possibly
using multiple threads simultaneously, depending on the parameter
passed to the master’s constructor. A pointer to the current block b,
a communication proxy cp, and custom auxiliary arguments are pro-
vided to foo(). A communication proxy is the object that manages
communication between the current block and its neighbors. Inside
foo(), data are dequeued from each neighbor using cp. Presumably
some local work is done on the received data before enqueueing
outgoing data to be sent to neighboring blocks. Those data are ex-
changed in the next communication phase using the exchange()
function of the master.

Depending on the value of mem blocks, the master keeps only a
limited number of blocks in memory. In this case foreach() moves
blocks and their queues between memory and storage as necessary;
exchange() does the same but only with the queues. All blocks or
just one block in memory are not the only two choices available to
the user: any number of blocks may be selected to reside in memory.
Depending on the value of num threads, the master executes the
blocks that are in memory concurrently using multiple threads. Both
of these features, controlling the number of blocks in memory and
multithreading their execution, are realized simply by changing these
two parameters. If these parameters are command-line arguments,
recompilation is not needed: all the combinations of these modes
are available at run time.

// main program
Master master(world , num_threads , mem_blocks , ...);
ContiguousAssigner assigner(world.size(), tot_blocks );
decompose(dim , world.rank(), domain , assigner , master );

master.foreach (&foo);
master.exchange ();

// callback function for each block
void foo(void* b, const Proxy& cp, void* aux)
{

for (size_t i = 0; i < in.size (); i++)
cp.dequeue(cp.link()->target(i), incoming_data );

// do work on incoming data

for (size_t i = 0; i < out.size (); i++)
cp.enqueue(cp.link()->target(i), outgoing_data[i]);

}

Listing 1: A typical DIY2 program. Omitted are details how to
construct, destruct, and serialize a block.

3.2 Blocks
At the heart of DIY2’s design is the idea of organizing data into
blocks, which despite their name need not be “blocky”: subsets of
a triangulation or subgraphs of a full graph make perfectly good
blocks. Blocks are indivisible units of data. They can reside in
different levels of memory/storage transparently to the user, and
DIY2 continues to manage communication between blocks as it
does when blocks are in DRAM. Blocks are created by the user and
are handed off to a master, the object responsible for managing both
their placement in the memory hierarchy and their communication.

A single MPI process may own multiple blocks, so master pro-
vides a method foreach() to execute a callback function on every
block. If not all blocks reside in memory, foreach() decides when
(and whether) a block needs to be brought into memory and when
a block can be moved out. By default, DIY2 cycles through all the
blocks, starting with those that remain in memory from the previ-
ous loop. DIY2 may use multiple threads to process several blocks
simultaneously.

The foreach() callback function receives a pointer to the block
and also an auxiliary communication proxy. The latter allows the
user to enqueue/dequeue information to/from the neighbor blocks,
exchanged during the next/previous round of communication. Once
foreach() is finished, the user may request the master to exchange
its outgoing queues with the neighbors (and accordingly, receive
incoming queues to be processed at the next round). Thus, the
foreach/exchange mechanism accommodates the bulk-synchronous
parallel (BSP) model of algorithm design and formalizes its use.

3.3 Data types
DIY2 supports arbitrary data types in blocks and messages. Both
communication and block movement mechanisms rely on DIY2
serialization routines. The library uses C++ template specialization
to facilitate serialization. The default implementation simply copies
the binary contents of the object. This works as intended for plain
old data (in C++ terminology), but if a class contains complicated
members (e.g., pointers or STL containers), extra logic is necessary.
DIY2 uses partial template specialization for many STL containers.
Accordingly, data models consisting of complex types usually need
to specify only which members to serialize; the actual logic for
serialization of the base types (for example, std::vector) already
exists in DIY2.

The serialization mechanism is deliberately simple: it does not
chase pointers, does not track objects, and does not handle poly-
morphism. If the user wants such facilities, she can trivially wrap
an external serialization mechanism such as the Boost serialization
library2 without adding overhead. We note, however, that despite

2http://www.boost.org



// partners specifies the reduction pattern
// Partners = RegularMergePartners , RegularSwapPartners ,
// RegularAllReducePartners
Partners partners(dim , nblocks , k, contiguous );

// execute the reduction
reduce(master , assigner , partners , &foo);

// callback function
void foo(void* b, const ReduceProxy& rp,

const Partners& partners)
{

for (i = 0; i < rp.in_link.size (); i++)
rp.dequeue(rp.in_link (). target(i),

incoming_data[i]);

// do work on incoming data

for (i = 0; i < rp.out_link.size (); i++)
rp.enqueue(rp.out_link (). target(i),

outgoing_data[i]);
}

Listing 2: Examples of DIY2 global reductions. The user would
include one of the partner objects shown followed by a call to the
reduce() function. The user also provides the callback function
foo().

its simplicity, DIY2’s data type mechanism is powerful enough to
accommodate all the data models in the applications described in
Section 4.

3.4 Communication patterns
Communication happens strictly at the block level: blocks enqueue
messages to each other, and DIY2 translates them into the messages
between MPI processes (appending source and destination block
IDs). There are two types of communication in DIY2: local and
global.

Local neighbor exchange. For local communication, the master
records, in a link class, the neighbors of every block it owns. The
link is our abstraction for the local connectivity (sub)graph repre-
senting the edges to the blocks with which the current block can
communicate. In its most basic form, the link stores the list of neigh-
bor blocks and their corresponding MPI ranks. For certain regular
decompositions, links record extra information for convenience: for
example, the spatial direction of the neighbors or their block bounds.
From the point of view of an algorithm designer, the link isolates
her from the details of how a particular communication pattern maps
onto hardware. The links can be set up manually by the user in
the case of custom communication topologies; in the case of reg-
ular communication topologies, DIY2 sets up links automatically.
The two regular topologies currently supported by automatic link
creation are a regular lattice and a k-d tree of blocks.

We have already seen the local neighbor exchange pattern in
Listing 1. The user and the DIY2 runtime communicate over the
link using the communication proxy during alternating phases of
foreach() callback functions and master exchanges.

Global reductions. Global reductions are invoked in a DIY2 pro-
gram with a single function call and a custom callback for the oper-
ator to be executed in each round. Examples are shown in Listing
2. A user calls reduce() with a master, assigner, partners object,
and a callback foo(). The assigner is a class aware of the global
placement of all the blocks. The partners class specifies how the
blocks communicate during the reduction, which proceeds in rounds.
For each round, partners determines whether a given block is active,
and what its in link and out link are. The two links record from
which blocks a block receives messages and where it should send
the results of its own computation. Both links are passed to the
callback foo(), so that the user can enqueue and dequeue messages
as before.

Internally, DIY2 uses the same foreach/exchange mechanism to

implement global communication patterns. It dynamically creates
links and adjusts how many messages each block expects to receive
during an exchange. Because global reduction patterns are built
on the same local exchange mechanism, they take advantage of the
same automated block movement in and out of memory.

DIY2 implements several partners classes. Two of them are espe-
cially useful and serve as common building blocks: RegularMerge
Partners and RegularSwapPartners. The former expresses the
communication pattern for a k-ary reduction to a single block and can
be used to implement familiar MPI operations such as MPI Reduce
and MPI Gather.

Swap partners organize all b blocks into communication groups of
size k, where, depending on a user-specified parameter, the distance
between blocks in the groups either grows by a factor of k in each
round (starting with groups of contiguous blocks) or shrinks by a
factor of k (starting with i-th, (b/k+ i)-th, (2b/k+ i)-th, etc. blocks
in the same group). The former (growing) arrangement is useful
when one needs to unite contiguous data, for example during the
computation of local–global merge trees [23]. The latter (shrinking)
arrangement is useful for sorting values into specified ranges in
logk b iterations of k · b messages each. MPI Reduce scatter and
MPI All reduce can be expressed as swap reductions.

The partner patterns are more flexible than their MPI counterparts,
not least because they dissociate block IDs from MPI ranks. If the
blocks form a regular decomposition of a d-dimensional lattice, both
merge and swap partners can alternate between different dimensions
between the rounds (hence the name “Regular”). Such alternation
is useful when one wants to keep the shape of the merged data
uniform in all dimensions. Furthermore, one may drop some of
the dimensions from the reduction, which is useful for computing
the projection of the data along those dimensions. In general, it is
possible to initialize both types of partners with a list of pairs, each
recording the dimension and the group size to use in the given round.

As mentioned above, motivated by the work in [26] and the
knowledge that higher k are better on some architectures, DIY2
supports k-ary reductions. The interconnection fabrics of modern
supercomputers are multiported and use RDMA, meaning that k can
usually be higher than 2, often 8 or 16, before saturating the network
(depending on the application and message size). Some collective
algorithms in MPI use a binary tree reduction in order to be portable,
and users of DIY2 can often do better by tuning k to their network
and application characteristics.

The number of blocks b need not be a power of k. To support such
a general arrangement, the number of blocks (in each dimension, in
case of multidimensional decomposition) is factored as b = k1 · k2 ·
. . ., where individual factors ki are kept as close as possible to the
target k. Specifically, prime factors of b that are less than or equal
to k are grouped together, so that the product of individual groups
does not exceed k. Prime factors of b that are greater than k become
individual ki multipliers out of necessity.

The global communication patterns discussed above are included
in DIY2, but the user is not limited to them. Any pattern that
proceeds in BSP rounds can be implemented in DIY2; such a pattern
can be expressed by a user through a ‘Partners’ class (of which
merge, swap, and allreduce partners are just examples). As a specific
example, DIY2 includes an algorithm to distribute particles into
blocks through a k-d tree decomposition. The pattern involved
in that computation is more general than the pure merge or swap
reductions. Section 4 shows how three analysis codes take advantage
of the above patterns.

3.5 Out-of-core movement

A key feature of DIY2 is its ability to move data seamlessly across
the memory/storage hierarchy. This feature is becoming increasingly
important on HPC architectures with limited memory capacity per
core but increasing number of levels of memory/storage; for exam-



ple, the U.S. Department of Energy (DOE) leadership computing
architectures [2].

In DIY2, the user can limit the number of blocks that a master
stores in memory by specifying this limit to the constructor, together
with details about where to store blocks that have been evicted
from memory. Inside the library, external storage is abstracted as a
dictionary where one can put arbitrary binary buffers to fetch back
later. DIY2 saves each such buffer in its own file.

By default, foreach() cycles through the blocks, starting with
those that are already in memory. When it needs to fetch a new
block from external storage, it unloads all the blocks from memory,
together with their queues. (More accurately, the thread that needs
to load a block unloads all the blocks that it owns.) The blocks are
serialized as individual units (i.e., each block gets its own file); all
the outgoing queues of a block are saved together as one unit. During
an exchange phase, the master fetches outgoing queues from exter-
nal storage as necessary while ensuring that the number of queues
in flight (the queues posted by MPI Isend whose MPI Request s
are still pending) does not exceed the allowed block limit. Upon
receiving a queue, the master moves it to storage if its target block
is stored out of core.
Skip mechanism. Although the above mechanism is sufficient in
many cases, it is not always as efficient as it could be. For example,
in Section 4, we describe an iterative code where blocks do not need
to be updated if their incoming queues are empty. To avoid having
to load a block, just to determine that we did not need to do so
after all, foreach() accepts an optional parameter, skip. Skip is a
C++ functor that DIY2 calls to decide whether a block needs to be
processed. The functor has access to the master itself and, therefore,
can query its different properties, including the sizes of the incoming
queues for a block. If skip determines that a block does not need to
be processed, the block is not loaded into memory.

Another example where the skip mechanism is essential to im-
prove efficiency is the global merge reduction, described earlier.
When reduce() is told by a partners class that a particular block
is inactive during a processing round, it passes this information on
to the foreach() function by supplying an appropriate instance of
skip. This mechanism is essential to efficiently implement a global
merge reduction, where, as data are reduced to a single block, the
number of active blocks drops by a factor of k from round to round.
Swap elision. Another out-of-core optimization implemented in
DIY2 is swap elision. If multiple foreach() operations are executed
consecutively, then, by default, if the number of blocks in memory
is limited, the master swaps each block in and out of core, once per
operation. But if there are no exchange phases in between, there
is no reason to unload the block after a foreach() only to reload
it for the next callback, which receives no new information. So
DIY2 lets the user switch the default immediate to a delayed mode,
where foreach() only queues callbacks, to be later executed either
explicitly by the user or implicitly by calling exchange().

On the surface, swap elision looks like a trivial optimization: after
all, one can always create an auxiliary function that calls back the
different user functions—manually mimicking the queueing process.
This optimization becomes important, when foreach() is used
inside other functions that a user cannot easily modify. For example,
a typical reduce operation that carries out global communication
begins and ends with a call to foreach(), to enqueue data during the
initial and to dequeue data during the final rounds of communication.
Executing two such reduce operations in a row—for example, in a
parallel sample sort where random samples are gathered, quantiles
are determined, and then the data are sent to the correct blocks—the
last foreach() of the first and the first foreach() of the second
reduction do not exchange any information. Therefore, swapping
blocks between them is inefficient.

The out-of-core mechanism employs other optimizations. For
example, the master accepts an extra “queue policy” that specifies

32 64 128

102.5

103

627

318

171

998

603

389

Number of processes

Se
co

nd
s

Flash
Memory

Figure 2: Time to compute Delaunay tessellation of 10243 points,
split among 1024 blocks, using different numbers of processors. In
the “Memory” setting, all blocks are kept in memory. In the “Flash”
setting, only one block per process is kept in memory.

when not to evict queues; the default policy allows queues smaller
than 4 KB to stay in memory. Overall, these optimizations are less
important, and we do not describe them in detail.

4 EXPERIMENTS

Performance tests were run on the IBM Blue Gene/Q Mira and
Cray XC30 Edison machines at the Argonne Leadership Comput-
ing Facility (ALCF) at Argonne National Laboratory and at the
National Energy Research Scientific Computing Center (NERSC)
at Lawrence Berkeley National Laboratory, respectively. Mira is a
10-petaflop system consisting of 48K nodes, each node with 16 cores
(PowerPC A2 1.6 GHz) and 16 GB RAM. Edison is a 2.57-petaflop
machine with 5576 nodes, each node with 24 cores (Intel Ivy Bridge
2.4 GHz) and 64 GB RAM. GCC (version 4.4.7 on Mira, version
4.9.2 on Edison) with -O3 optimization was used to compile the test
code.

The out-of-core tests were performed on Alva, a small develop-
ment cluster on Edison, used as a burst buffer testbed. The cluster
has 14 compute nodes, which have access to six burst buffer nodes,
exposed as six individual flash file systems. Each one has 3.2 TB of
storage space, composed of two Sandisk Fusion 1.6 TB SSD cards.

We evaluate three complete analysis codes3 built with DIY2. The
first computes Delaunay and Voronoi tessellations of N-body particle
datasets. The second uses the Voronoi tessellation to generate a
density estimate of particles on a grid. The third computes distances
on a grid to a set of obstacles; it is part of a larger geometric analysis
package implemented on top of DIY2. Many more codes have
been implemented with DIY2 than the ones featured here, including
geometric, statistical, and topological analysis. For example, other
applications include parallel computation of persistent homology
described in [20] and distributed merge trees described in [23].
Voronoi and Delaunay tessellation. The first analysis code com-
putes a Voronoi and Delaunay tessellation in parallel at large scale.
We ported a parallel algorithm [27], originally implemented using
DIY1, to DIY2. Our dataset contains 10243 dark matter tracer
particles computed by the HACC cosmology code [15].

Figure 2 illustrates an out-of-core strong scaling experiment using
a regular block lattice. We tessellated 10243 input particles from
a cosmological simulation, split into 1024 blocks, divided evenly

3The full version of this paper, available as a technical report [22], also
compares the performance of DIY2 against DIY1 and MPI on a benchmark
suite.



256 512 1024 2048 4096 8192

101

102

Number of processes

Se
co

nd
s

none
DIY2

OpenMP

Figure 3: Density of 5123 particles estimated onto a 10243 grid with
different threading options.

between the processes. Figure 2 shows these results run on the Alva
XC30 machine, comparing all blocks in memory with one block
in memory and the rest in Alva’s burst buffer. The flash-based out-
of-core version is between 1.5 and 2 times slower than in-core, but
otherwise scales with the number of processes almost as the in-core
version. “Flash” refers to the fact that the storage medium consists
of flash-memory burst buffer nodes.

The individual processes used the following amounts of memory,
as reported by the high-water mark through Linux’s /proc facility.
When all blocks were stored in memory, the maximum high-water
marks for any process were 29.5 GB for 32 processes (32 blocks per
process), 15 GB for 64 processes (16 block per process), and 7.7
GB for 128 processes (8 blocks per process). When using 1024 pro-
cesses, with 1 block per process, the high-water mark was 1.13 GB.
When using external storage, and keeping only one block in memory,
the maximum high-water mark was 1.19 GB. Therefore, the serial-
ization and out-of-core movement mechanisms do not introduce a
significant memory overhead.

Tessellation-based density estimation. Our second application
uses a Voronoi tessellation in order to estimate particle density on
a regular grid. Schapp and van de Weygaert [31, 32] showed that
using a tessellation as an intermediate step in estimating density can
produce more accurate results than computing the density directly
from the input particles. We implemented the tessellation-based den-
sity estimator [25] on top of both DIY1 and DIY2. We coupled the
tessellation and density estimation into a single (tess-dense) pipeline,
without an intervening disk write of the tessellation between the two
stages.

Another new feature that DIY2 adds over DIY1 is the ability to
automatically multithread the foreach() block computations sim-
ply by assigning multiple threads to DIY2. The user enables this
capability by changing a single run-time parameter. In comparison,
manually multithreading the compute kernel of the block can be
tedious and error-prone, especially when mutexes are required to
protect shared data from race conditions. In the following experi-
ment, we compared the performance of DIY2’s block threading with
no threading and with a manually threaded OpenMP kernel. The
DIY2 automatically threaded version launches concurrent callback
functions on as many blocks as available threads. In the manually-
threaded OpenMP version, DIY2 is single-threaded, but the code
inside the block callback function is threaded using OpenMP.

The following experiments were run on the BG/Q, which has 64
hardware threads per compute node. We divided those 64 threads
into 8 MPI processes per compute node and 8 threads per MPI
process. For DIY2 automatic threading, we used 8 blocks per MPI

64 128 256

102.5

103

795

449

263

1,025

673

469

1,344

968

750

Number of processes

Se
co

nd
s

Flash (no skip)
Flash (skip)

Memory

Figure 4: Time to compute distance function using different numbers
of processors. In all cases, the data are divided into 1024 blocks.
In the “Memory” setting, all blocks are kept in memory (evenly
divided between the processors). In the “Flash” setting, only one
block is kept in memory per process. “Skip” vs “no skip” refers to
the optimization that skips blocks that have empty incoming queues.

process; for OpenMP manual threading, we had 1 block per MPI
process, but the block was 8 times larger than in the automatic case.
In other words, the MPI processes were assigned the same amount of
data in both cases. The density of 5123 input particles was estimated
onto a 10243 output grid using the Voronoi tessellation.

Figure 3 shows all three threading versions for the density estima-
tion stage of the tess-dense pipeline. The speedup from 1 thread to 8
DIY2 threads is approximately 4.0 times faster at 256 process and
2.3 times faster at 8192 processes. The interesting point is that the
manually-written OpenMP threading is not much better. Its speedup
ranges from 4.8 to 2.3 times faster. In other words, roughly the same
performance was achieved with no programming effort by simply
changing one parameter to DIY2 compared with manually threading
a kernel using OpenMP.
Distance on a grid computation. As part of a suite of geometric
analysis algorithms, we implemented a code to compute a signed
distance at each grid point to a set of obstacles. The algorithm
proceeds as follows. The grid is partitioned into regular blocks,
each with a one-voxel wide ghost zone into neighboring blocks. We
compute the distances to the obstacles within each block, recording
the source, i.e., the nearest obstacle, responsible for the distance.
Then, iteratively, the neighboring blocks exchange those voxels in
their ghost zones where a source has changed. After the exchange,
the distances (and sources) are updated, and the process repeats
until no block has to update any of its distances. (The number of
iterations, and the number of times a block needs to be updated
depends heavily on the data.)

One notable property of this algorithm is that a block performs no
updates if none of its neighbors changed the nearest obstacle sources
in the block’s ghost zones. When running in-core, this observation
has no implications: the code quickly recognizes that incoming
queues are empty and finishes processing the block without any
updates. In the out-of-core setting, this observation is responsible
for a key optimization. When running foreach() to process the
blocks, it is passed a skip functor (described in Section 3) that
checks if the block’s incoming queues are empty. If they are, skip
signals to the master that the block does not need to be loaded.

This optimization is responsible for the out-of-core running times
measured on the Alva XC30 machine and labeled “Flash (skip)”
in Figure 4; its advantage over the unoptimized “Flash (no skip)”
version is evident. The input data set is a binary 25602×2160 image



of a sandstone, acquired at Berkeley Lab’s Advanced Light Source.
The data are divided into 1024 blocks. Either all blocks are kept
in memory, or only one block is kept in memory, while the rest
are swapped out to flash. (In both cases, the blocks are divided
evenly between the processors at the start of the program.) The
imbalance in the amount of work required by the different blocks is
difficult to exploit when running in-core, but it becomes a key other
advantage in the out-of-core regime. Idle blocks stay on the external
storage and do not interfere with the processing of the blocks that
require updating. This is the principle reason why the block skipping
optimization is so useful.

We also note the memory use of the individual processes, as
reported by the high-water mark through Linux’s /proc facility.
For the in-memory regime, we get 4.12 GB for 64 processes (16
blocks per process), 2.29 GB for 128 processes (8 blocks per
process), 1.36 GB for 256 processes (4 blocks per process). It is
721 MB for 1024 processes (1 block per process); the apparent
overhead comes from the memory used by the serial algorithm
that computes the distances inside a block. When only one block
is kept in memory (in the cases of 64, 128, and 256 processes),
the high-water mark stays between 693 and 767 MB, while the
total external storage usage goes up to 217 GB. These numbers
highlight two points. First, block serialization and out-of-core
movement do not introduce significant memory overhead. Second,
a key reason for the strong performance that we see in the
out-of-core case is that individual blocks, which are moved as
individual units in and out of memory, are substantial in size.
Such a regime is known to be advantageous when using burst buffers.

5 CONCLUSION

DIY2 establishes a foundation for developing data-parallel code that
can run at high concurrency in and out of core. In this paper, we
have presented the design of DIY2 as well as the experiments that
illustrate its efficiency. In future work, we plan to pursue extensions
to make such codes more efficient and robust. None of the planned
efforts will require serious restructuring of existing codes written
on top of DIY2. As such, programmers can already take advantage
of the block abstractions, communication, threading, and external
storage facilities built into DIY2 to write data analysis codes whose
performance is portable across different computing platforms.

ACKNOWLEDGEMENTS

We gratefully acknowledge the use of the resources of the Argonne
Leadership Computing Facility (ALCF) and the National Energy
Research Scientific Computing Center (NERSC). We are especially
grateful to Zhengji Zhao, at NERSC, for helping us with the Alva
burst buffer testbed. We are grateful to Michael Manga and Dula
Parkinson for the sandstone dataset, and to Zarija Lukić for the
cosmology dataset. This work was supported by Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy,
under Contracts DE-AC02-06CH11357 and DE-AC02-05CH11231.
Work is also supported by DOE with agreement No. DE-FC02-
06ER25777.

REFERENCES

[1] J. Ahrens, B. Geveci, and C. Law. “ParaView: An End-User
Tool for Large-Data Visualization”. In: The Visualization
Handbook (2005), p. 717.

[2] J. Ang et al. “Abstract Machine Models and Proxy Architec-
tures for Exascale Computing”. In: Hardware-Software Co-
Design for High Performance Computing (Co-HPC), 2014.
IEEE. 2014, pp. 25–32.

[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. “Le-
gion: Expressing Locality and Independence with Logical
Regions”. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society Press. 2012, p. 66.

[4] R. Bordawekar and A. Choudhary. “Communication Strate-
gies for Out-of-Core Programs on Distributed Memory Ma-
chines”. In: Proceedings of the 9th international conference
on Supercomputing. ACM. 1995, pp. 395–403.

[5] P. Brezany, A. Choudhary, and M. Dang. “Language and
Compiler Support for Out-of-Core Irregular Applications
on Distributed-Memory Multiprocessors”. In: Languages,
Compilers, and Run-Time Systems for Scalable Computers.
Springer, 1998, pp. 343–350.

[6] A. C. Calder et al. “High-Performance Reactive Fluid Flow
Simulations Using Adaptive Mesh Refinement on Thousands
of Processors”. In: Supercomputing, ACM/IEEE 2000 Con-
ference. 2000.

[7] H. Childs et al. “Extreme Scaling of Production Visualization
Software on Diverse Architectures”. In: IEEE Computuer
Graphics and Applications 30.3 (2010), pp. 22–31.

[8] A. Colvin and T. H. Cormen. “ViC*: A Compiler for Virtual-
Memory C*”. In: High-Level Parallel Programming Models
and Supportive Environments, 1998. Proceedings. Third In-
ternational Workshop on. IEEE. 1998, pp. 23–33.

[9] J. Dean and S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. In: Commun. ACM 51 (1 Jan.
2008), pp. 107–113.

[10] D. Durand, R. Jain, and D. Tseytlin. “Distributed Schedul-
ing Algorithms to Improve the Performance of Parallel Data
Transfers”. In: ACM SIGARCH Computer Architecture News
22.4 (1994), pp. 35–40.

[11] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox. “Twister: A Runtime for Iterative Mapre-
duce”. In: Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing. ACM.
2010, pp. 810–818.

[12] J. Ekanayake, S. Pallickara, and G. Fox. “Mapreduce for
Data Intensive Scientific Analyses”. In: eScience, 2008.
eScience’08. IEEE Fourth International Conference on. IEEE.
2008, pp. 277–284.

[13] P. Fischer, J. Lottes, D. Pointer, and A. Siegel. “Petascale Al-
gorithms for Reactor Hydrodynamics”. In: Journal of Physics
Conference Series 125.1 (July 2008), pp. 012076–+.

[14] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E.
Lusk, W. Saphir, and T. Skjellum. “MPI-2: Extending the
Message-Passing Interface”. In: Proceedings of Euro-Par’96.
Lyon, France, 1996.

[15] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and
K. Heitmann. “HACC: Extreme Scaling and Performance
Across Diverse Architectures”. In: Proceedings of SC13: In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’13. Denver, Colorado:
ACM, 2013, 6:1–6:10.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad:
Distributed Data-Parallel Programs from Sequential Build-
ing Blocks”. In: ACM SIGOPS Operating Systems Review.
Vol. 41. 3. ACM. 2007, pp. 59–72.

[17] L. Kalé and S. Krishnan. “CHARM++: A Portable Concur-
rent Object Oriented System Based on C++”. In: Proceedings
of OOPSLA’93. Ed. by A. Paepcke. ACM Press, Sept. 1993,
pp. 91–108.



[18] M. Kandemir, A. Choudhary, J. Ramanujam, and M. A. Kan-
daswamy. “A Unified Framework for Optimizing Locality,
Parallelism, and Communication in Out-of-Core Computa-
tions”. In: Parallel and Distributed Systems, IEEE Transac-
tions on 11.7 (2000), pp. 648–668.

[19] D. LaSalle and G. Karypis. “BDMPI: Conquering BigData
with Small Clusters using MPI”. In: Proceedings of the 2013
International Workshop on Data-Intensive Scalable Comput-
ing Systems. ACM. 2013, pp. 19–24.

[20] R. Lewis and D. Morozov. “Parallel Computation of Persis-
tent Homology using the Blowup Complex”. In: Proceedings
of the Annual Symposium on Parallelism in Algorithms and
Architectures. 2015, pp. 323–331.

[21] Y. Liu and J. Snoeyink. “A Comparison of Five Implementa-
tions of 3D Delaunay Tessellation”. In: Combinatorial and
Computational Geometry 52 (2005), pp. 439–458.

[22] D. Morozov and T. Peterka. Block-Parallel Data Analysis
with DIY2. Tech. rep. LBNL-1005149. Lawrence Berkeley
National Laboratory, 2016.

[23] D. Morozov and G. Weber. “Distributed Merge Trees”. In:
Proceedings of the Annual Symposium on Principles and
Practice of Parallel Programming. 2013, pp. 93–102.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
“Pig Latin: A Not-So-Foreign Language for Data Processing”.
In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. ACM. 2008, pp. 1099–
1110.

[25] T. Peterka, H. Croubois, N. Li, S. Rangel, and F. Cappello.
“Self-Adaptive Density Estimation of Particle Data”. In: To
appear in SIAM Journal on Scientific Computing SISC Spe-
cial Edition on CSE’15: Software and Big Data (2016).

[26] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur.
“A Configurable Algorithm for Parallel Image-Compositing
Applications”. In: Proceedings of SC 09. Portland OR, 2009.

[27] T. Peterka, D. Morozov, and C. Phillips. “High-Performance
Computation of Distributed-Memory Parallel 3D Voronoi and
Delaunay Tessellation”. In: Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press. 2014, pp. 997–1007.

[28] T. Peterka and R. Ross. “Versatile Communication Algo-
rithms for Data Analysis”. In: EuroMPI Special Session on
Improving MPI User and Developer Interaction IMUDI’12.
Vienna, AT, 2012.

[29] T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. “A Study of Parallel Particle Trac-
ing for Steady-State and Time-Varying Flow Fields”. In: Pro-
ceedings of IPDPS 11. Anchorage AK, 2011.

[30] T. Peterka et al. “Scalable Parallel Building Blocks for Cus-
tom Data Analysis”. In: Proceedings of the 2011 IEEE Large
Data Analysis and Visualization Symposium LDAV’11. Provi-
dence, RI, 2011.

[31] W. Schaap and R. van de Weygaert. “Continuous Fields
and Discrete Samples: Reconstruction Through Delaunay
Tessellations”. In: Astronomy and Astrophysics 363 (2000),
pp. L29–L32.

[32] W. E. Schaap. DTFE: The Delaunay Tesselation Field Es-
timator. Ph.D. Dissertation. University of Groningen, The
Netherlands, 2007.

[33] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. “The
Design and Implementation of an Object-Oriented Toolkit for
3D Graphics and Visualization”. In: Proceedings of the 7th
conference on Visualization ’96. VIS ’96. San Francisco, Cal-
ifornia, United States: IEEE Computer Society Press, 1996,
93–ff.

[34] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken.
“Regent: A High-Productivity Programming Language for
HPC with Logical Regions”. In: Supercomputing (SC). 2015.

[35] R. Thakur, R. Bordawekar, and A. Choudhary. “Compiler
and Runtime Support for Out-of-Core HPF Programs”. In:
Proceedings of the 8th international conference on Supercom-
puting. ACM. 1994, pp. 382–391.

[36] R. Thakur and A. Choudhary. “An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays”. In:
Scientific Programming 5.4 (1996), pp. 301–317.

[37] R. Thakur and A. Choudhary. “Runtime Support for Out-of-
Core Parallel Programs”. English. In: Input/Output in Parallel
and Distributed Computer Systems. Ed. by R. Jain, J. Werth,
and J. Browne. Vol. 362. The Kluwer International Series
in Engineering and Computer Science. Springer US, 1996,
pp. 147–165.

[38] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S.
Kuditipudi. “Passion: Optimized I/O for Parallel Applica-
tions”. In: Computer 29.6 (1996), pp. 70–78.

[39] A. Thusoo et al. “Hive-A Petabyte Scale Data Warehouse
Using Hadoop”. In: Data Engineering (ICDE), 2010 IEEE
26th International Conference on. IEEE. 2010, pp. 996–1005.

[40] J. S. Vitter. “External Memory Algorithms”. In: Handbook
of massive data sets. Springer, 2002, pp. 359–416.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. “Spark: Cluster Computing with Working Sets”. In:
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing. 2010, pp. 10–10.


