
DUALITIES IN PERSISTENT (CO)HOMOLOGY

VIN DE SILVA, DMITRIY MOROZOV, AND MIKAEL VEJDEMO-JOHANSSON

Abstract. We consider sequences of absolute and relative homology and cohomology groups that
arise naturally for a filtered cell complex. We establish algebraic relationships between their per-
sistence modules, and show that they contain equivalent information. We explain how one can use
the existing algorithm for persistent homology to process any of the four modules, and relate it to
a recently introduced persistent cohomology algorithm. We present experimental evidence for the
practical efficiency of the latter algorithm.

1. Introduction

The subject of inverse problems deals, fundamentally, with the inference of shape. From some
related measurements — such as a family of particular path integrals — we try to deduce geometric
information. With the classical techniques in the field, with Fourier and other integral transforms,
one can deduce an impressive amount of information. However, with non-linearity, and ill-posed,
ill-conditioned situations, the classical methods need increasingly large amounts of regularization
or data cleaning. Topology offers a family of methods that allow the inference of information —
if not geometric, then at least topological — into the field. In particular, the recent development
of persistent homology [1], and its applications to topological data analysis [2], demonstrate an
approach to topological invariants that becomes applicable to high-dimensional, finite and discrete
measurement sets.

To take an explicit example, geological sonar investigations employ inverse problem methods to
investigate the geometric structure of the density sublevel sets in subterranean domains, relating
density variations to occurrences of oil, water or mineral pockets. The kind of information sought
starts out with a qualitative judgement: is there a pocket at all; are there several or few; are
they connected or not? These first questions, before the shape can be given an explicit geometric
description, are a matter of topological properties, and the study of sublevel sets of functions on
domains is one of the most convincing uses of persistent homology.

The persistent homology algorithm of Edelsbrunner, Letscher, and Zomorodian [1] is now ten
years old. In its natural general form [3], the input is a filtered ‘space’ (topological space, or
simplicial complex, or abstract chain complex) and the output is a collection of half-open real
intervals known as a barcode or a persistence diagram.

These barcodes contain one bar for each topological feature found – one bar for each homology
class, representing a hole or a higher-dimensional void. These bars come with a starting point,
indicating the focal level at which the feature first becomes visible, and an ending point, indicating
the focal level at which the feature vanishes again. A fundamental tenet, as described in [2] is that
the length of such a bar – the difference between when it shows up and when it vanishes – encodes

Date: July 23, 2017.
VdS has been partially supported by DARPA, through grants HR0011-05-1-0007 (TDA) and HR0011-07-1-0002

(SToMP), and holds a Digiteo Chair. DM has been partially supported by DARPA grant HR0011-05-1-0007 (TDA)
and by the DOE Office of Science, Advanced Scientific Computing Research, under award number KJ0402-KRD047,
under contract number DE-AC02-05CH11231. MVJ has been partially supported by the Office of Naval Research,
through grant N00014-08-1-0931.

1



2

the relevance of the feature. This emphasizes the topological features that are enveloped by a dense
distribution of points, and yet have a geometrically large void in the middle.

In many applications, all that is required is the barcode. This tells us how many homological
features exist at any given level of the filtration, and how many of those survive to any given sub-
sequent level. This information is already very rich, and has been proven to be statistically robust
[4, 5]. Sometimes more is required. The most common request is for geometric representatives
of the features: in other words, explicit homology cycles representing each barcode interval. The
original algorithm provides these cycles automatically: they are essential to the way in which the
barcode intervals are calculated.

In fact, there are at least four natural persistent objects that can be derived from a filtered space.
They are:

persistent

{
absolute
relative

}{
homology

cohomology

}
The ‘standard’ object is persistent absolute homology, and most treatments focus on this. However,
it has become increasingly clear that the other three objects are important in their own right. The
transition between homology and cohomology is in some sense nothing more than the duality of
vector spaces; persistent homology and cohomology have the same barcodes. However, homology
cycles and cohomology cocycles are quite different, and some applications call for cocycles rather
than cycles [6]. The occasional utility of relative rather than absolute homology is probably easier
to grasp intuitively; for example see [7] for an application in sensor networks. It is easy to ‘fake’ the
calculation of relative homology using absolute homology and a cone construction, but we point
out that this trick is unnecessary.

Our goal in this paper is to provide a streamlined approach to calculating barcodes and (co)cycle
representatives for all four persistent objects. We discuss this approach in terms of abstract algebra
and in terms of matrix computations.

We observe that:

• absolute homology and cohomology have the same barcode;
• relative homology and cohomology have the same barcode;
• the absolute barcode and the relative barcode can be deduced from each other;
• the cycles and bounding chains of persistent absolute homology determine, and are deter-

mined by, the cycles and bounding chains of persistent relative homology;
• likewise, for absolute and relative cohomology cocycles and bounding cochains.

We discuss two different dualities. There is the standard duality which interchanges homology
and cohomology. We call this ‘pointwise’ duality. More interestingly, there is a different duality
which makes the following interchange:

absolute homology↔ relative cohomology

absolute cohomology↔ relative homology

We call this ‘global’ duality, and it appears only in the context of persistent topology. Global
duality ‘commutes’ with all possible algorithms and theorems: a method for calculating persistent
absolute homology will equally well calculate persistent relative cohomology, once the input data
have been turned upside-down in a particular way.

Combining all of these equalities and dualities, it emerges that a single calculation (run twice)
suffices to calculate all four persistent objects. Actually, we describe two different algorithms for
that calculation: pHcol (the ‘column algorithm’) and pHrow (the ‘row algorithm’). Here pHcol is
essentially the classic algorithm of [1, 3]; pHrow organises the calculation quite differently. The
preferred choice depends, in any given situation, on whether it is easier to look up rows or columns



3

of the boundary matrix of the filtered space — the specific representation of the space usually
biases this choice.

We are rewarded by an unexpected payoff. If we require only the absolute barcode, it turns out
that the best choice is an optimised version of pHrow called pCoh (the ‘cohomology algorithm’). We
give experimental evidence to this effect. Standard practice has been to use pHcol. We therefore call
on persistent topology library-writers to implement pCoh, and on persistent topology library-users
to use it.

1.1. Outline of paper. Section 2 is devoted to the algebra underlying this work. In 2.1–2.5 we
conduct the discussion at a high level (homology functors are assumed given, black-box style), and
in 2.6–2.7 we go into the necessary chain-level details. In 2.8 we give a brief abstract description
of the two dualities.

Section 3 is about matrix algorithms. In 3.1–3.4 we interpret the preceding algebra in terms of
matrix decomposition (following [8], again black-box style). In 3.5 we present the two algorithms,
pHcol and pHrow, and explain why they give the same output.

In Section 4 we relate the ideas in this paper to an earlier cohomology algorithm pCoh published
in [6]. We indicate why we expect pCoh to be faster that pHcol and pHrow for computing barcodes
of filtered simplicial complexes, and we verify this by experiment.

2. Algebra

We will assume that the reader is familiar with homology theory. Our preference is to use cellular
homology, because it is a little more general than simplicial homology.

2.1. Coefficients. Individual (co)homology groups are defined with coefficients in a field k, which
remains fixed throughout this paper. Persistent (co)homology then has the structure of a graded
module over the polynomial ring k[t]. Many things go wrong when we replace the field k with a
ring, in particular the ring of integers Z. See [3].

2.2. Filtered complexes. We are interested in the persistent topology of filtered topological
spaces. The simplest example is a filtered cell complex, which is a sequence X of cell complexes

(2.1) X : X1 ⊂ X2 ⊂ · · · ⊂ Xn = X∞

where X1 is a vertex σ1, and thereafter each complex is obtained from the previous one by adding
a single cell: Xi = Xi−1 ∪ σi. Here the index set is {1, 2, . . . , n}. Usually we attach real values ai
to the indices, which must satisfy a1 ≤ a2 ≤ · · · ≤ an.

Example. Our running example S will be a cellular filtration of the 2-sphere:

1 21 2
3

1 2
3

4

1 2
3

4

5

1 2
3

4

5

6

1

There are six cells, σ1, . . . , σ6 which appear at times ai = i, for i = 1, . . . , 6.

2.3. Persistent homology. If we apply a homology functor H(−) to a filtered complex X we
obtain a diagram:

(2.2) H(X) : H(X1)→ H(X2)→ · · · → H(Xn)



4

Typically H(−) denotes the k-dimensional homology Hk(−; k) or the total homology H∗(−; k). Then
(2.2) is a diagram of finite-dimensional vector spaces and linear maps, also known as a persistence
module.

A persistence module decomposes as a direct sum of interval modules [3]. These are labelled
by ordered pairs of integers [p, q], where 1 ≤ p ≤ q ≤ n. The pair [p, q] indicates a feature which
persists over the index set {p, . . . , q}. We frequently interpret [p, q] as the half-open real interval
[ap, aq+1), with the convention that an+1 =∞.

The persistence diagram or barcode is the multiset of ordered pairs [p, q] in the decomposi-
tion, or alternatively the multiset of half-open intervals [ap, aq+1). Thus we write:

Pers(H(X)) = {[p1, q1] , . . . , [pm, qm]}
= {[ap1 , aq1+1) , . . . , [apm , aqm+1)}

It is customary in applications to discard from the persistence diagram those intervals [ap, aq+1)
for which ap = aq+1.

Example. In our running example, the intermediate spaces S1, S3, S5 are all contractible, whereas
S2, S4, S6 are homeomorphic to the 0-sphere, 1-sphere, and 2-sphere, respectively. There are four
intervals in the persistence diagram of H∗(S):

Pers(H∗(S)) = {[1, 6]0 , [2, 2]0 , [4, 4]1 , [6, 6]2} = {[1,∞)0, [2, 3)0, [4, 5)1, [6,∞)2}

The subscript k in [p, q]k or [ap, aq+1)k indicates that the feature occurs in k-dimensional homology.

2.4. The four standard persistence modules. The standard persistent homology module H∗(X)
tells us how the absolute homology groups H∗(Xi) relate to each other as i varies. We can play the
same game with the absolute cohomology groups H∗(Xi), the relative homology groups H∗(Xn, Xi),
and the relative cohomology groups H∗(Xn, Xi). Here are the four sequences, lined up for compar-
ison.

H∗(X) : H∗(X1) → . . . → H∗(Xn−1) → H∗(Xn)

H∗(X) : H∗(X1) ← . . . ← H∗(Xn−1) ← H∗(Xn)

H∗(X∞,X) : H∗(Xn)→ H∗(Xn, X1)→ . . . → H∗(Xn, Xn−1)

H∗(X∞,X) : H∗(Xn)← H∗(Xn, X1)← . . . ← H∗(Xn, Xn−1)

The persistence diagram for absolute cohomology is a multiset of integer ordered pairs [p, q] with
1 ≤ p ≤ q ≤ n. For relative homology and cohomology, the persistence diagrams are multisets
of pairs [p, q] with 0 ≤ p ≤ q ≤ n − 1. In all cases, we interpret [p, q] as the half-open interval
[ap, aq+1), with the convention that a0 = −∞ and an+1 =∞.

Example. In our running example, we compute

Pers(H∗(S6,S)) = {[0, 0]0 , [2, 2]1 , [4, 4]2 , [0, 5]2} = {[−∞, 1)0, [2, 3)1, [4, 5)2, [−∞, 6)2} .

For instance, at index 2 we note that there is a nontrivial element of H1(S6, S2) represented by any
arc connecting the two points of S2. To be specific, the homology class is [σ3] = [σ4]. This class
vanishes in H1(S6, S3), and so it generates the interval [2, 3).

The reader may detect a relationship between the barcodes for absolute and relative homology.
We formalize this in the next section.



5

2.5. Barcode isomorphisms.

Proposition 2.3. For all k,

Pers(Hk(X)) = Pers(Hk(X)),

Pers(Hk(X∞,X)) = Pers(Hk(X∞,X)).

In other words, homology and cohomology have identical barcodes.

Proof. The universal coefficients theorem [9, Thm 3.2] asserts that there is a natural isomorphism

Hk(X; k) ≡ Hom(Hk(X; k),k).

In other words, cohomology and homology are dual as vector spaces, and hence have the same
dimension. ‘Natural’ implies that the induced maps

Hk(Xi; k)→ Hk(Xj ; k) and Hk(Xi; k)← Hk(Xj ; k)

are adjoint, and hence have the same rank. Because of the way the barcode is uniquely determined
by dimensions and ranks, it follows that the absolute homology and cohomology barcodes are the
same. This argument applies equally well to the relative barcodes. �

Notation. We partition each persistence diagram into two parts,

Pers = Pers0 ∪Pers∞,

where Pers0 comprises the finite intervals [a, b), and Pers∞ the infinite intervals [a,∞) or [−∞, b).

Proposition 2.4. For all k,

Pers0(Hk(X)) = Pers0(Hk+1(X∞,X)),

Pers∞(Hk(X)) = Pers∞(Hk(X∞,X)),

where the second ‘equality’ is interpreted as a bijection with [a,∞) ↔ [−∞, a). Thus, persistent
homology and relative homology barcodes carry the same information, with a dimension shift for
the finite intervals.

The proof appears in Section 2.6.

Remark. Thus, provided we take the dimension shifts into account, all four barcodes carry exactly
the same information. If we are only interested in barcodes, we can perform calculations in any
one of the four basic sequences, whichever is the most convenient.

Since the last term of Hk(X) is the same as the first term of Hk(X∞,X), namely Hk(Xn), the
two sequences can be concatenated into a single sequence, which we denote Hk(X) → Hk(X∞,X).
The index set for this sequence is {1, 2, . . . , n = 0̄, 1̄, 2̄, . . . , n− 1}, where we use barred numerals
to indicate that we are in the relative homology part of the sequence. The persistence diagram for
this complex will have intervals of three possible types:

• (p, q) where 1 ≤ p ≤ q < n, written as [p, q + 1) or [ap, aq+1) in interval form.
• (p̄, q̄) where 0 < p ≤ q ≤ n− 1, written as [p̄, q + 1) or [āp, āq+1).
• (p, q̄) where 1 ≤ p ≤ n, 0 ≤ q ≤ n− 1, written as [p, q + 1) or [ap, āq+1).

Proposition 2.5. The barcode Pers (Hk(X)→ Hk(X∞,X)) comprises the following collection of
intervals:

• An interval [a, b) for every interval [a, b) in Pers0(Hk(X)).
• An interval [ā, b̄) for every interval [a, b) in Pers0(Hk−1(X)).
• An interval [a, ā) for every interval [a,∞) in Pers∞(Hk(X)).



6

Proof. Note that the first two classes of interval in Pers (Hk(X)→ Hk(X∞,X)) are those which
do not meet the middle term Hk(Xn), and thus correspond exactly to finite intervals in
Pers(Hk(X)) and Pers(Hk(X∞,X)). This explains the first two cases, once we make the translation
Pers0(Hk(X∞,X)) = Pers0(Hk−1(X)).

It remains to show is that the intervals of type [a, b̄) are always of the form [a, ā).1 To do this, we
need to compare the right filtration of the sequence Hk(X) with the left filtration of the sequence
Hk(X∞,X). The first filtration is the nested sequence of subspaces

Im(Hk(Xi)→ Hk(Xn)), i = 1, 2, . . . , n− 1,

of Hk(Xn), and the second filtration is the nested sequence of subspaces

Ker(Hk(Xn)→ Hk(Xn, Xi)) i = 1, 2, . . . , n− 1,

of Hk(Xn). But the image and kernel subspaces are equal for each i, by the homology long exact
sequence for the pair (Xn, Xi). Thus the filtrations are the same. �

Remark. The sequence Hk(X)→ Hk(X∞,X) is not the same as the extended persistence [10]. The
latter, defined for the sublevel sets of a real-valued function, requires the reversal of the cells in the
relative half of the sequence — it translates into the use of the superlevel sets of the function. The
meaning of extended persistence for a general filtered space is a lot less straight-forward. The most
significant difference between the two sequences (besides the definition) are the extended pairs, the
intervals restricting to [a,∞) in Pers∞(Hk(X)). In our sequence, proposition 2.5, they are always
of the form [a, ā); on the other hand, in extended persistence there is no such restriction: these
pairs carry new information. Another notable difference is that the dualities in this paper apply
to general filtered spaces; Poincaré and Lefschetz dualities involved in the analysis of the extended
persistence require the domains to be manifolds.

2.6. Persistent chain complexes. We now give a more explicit description of the standard per-
sistence modules, in terms of chain complexes. Among other things, this will lead to a clean proof
of Proposition 2.4. Given a filtered cell complex X = σ1 ∪ · · · ∪ σn, define a persistence module

C : C1 → C2 → · · · → Cn

where Ci = 〈σ1, . . . , σi〉, the vector space over k with basis elements labelled σ1, . . . , σi. We also
have a boundary map: the boundary of any σj is a linear combination of cells which appear
previously:

∂σj =
∑
i<j

Dijσi

for some collection of coefficients Dij . Geometrically, the cells σi for which Dij 6= 0 will have
dimension one less than the dimension of σj .

The boundary map satisfies ∂2 = 0, and it restricts to boundary maps ∂i : Ci → Ci for each i.
Then C∗(Xi) = (Ci, ∂i) is the chain complex2 for the absolute homology of Xi, and C∗(X) = (C, ∂)
is the persistent version for X. Accordingly, we define the persistent absolute homology of X to be

H∗(X) = H(C, ∂) = Ker(∂)/ Im(∂).

1Thus the paired intervals [a,∞) and [−∞, a) in Pers∞(Hk(X)) and Pers∞(Hk(X∞,X)) are really the restrictions
of a single interval [a, ā) in the concatenated sequence.

2For simplicity we generally suppress the homological grading within each Ci, which comes from the geometric
dimensions of the cells associated to the generators. We will refer to it only when necessary.



7

Shown explicitly as a persistence module, this is:

H(C, ∂) :
Ker(∂1)

Im(∂1)
→ Ker(∂2)

Im(∂2)
→ · · · → Ker(∂n)

Im(∂n)
.

For the absolute cohomology persistence module H∗(X), we define

C∗ : C∗1 ← C∗2 ← · · · ← C∗n
where C∗i = Hom(Ci,k) = 〈σ∗1, σ∗2, . . . , σ∗i 〉, with {σ∗i } being the dual basis to {σi}. The coboundary
δ = ∂∗ is defined to be the adjoint to ∂. Then C∗(X) = (C∗, δ) and

H∗(X) = H(C∗, δ) = Ker(δ)/ Im(δ).

Again, this is a persistence module (with arrows to the left).

Example. In our running example, the boundary map is given as follows:

∂σ1 = ∂σ2 = 0,

∂σ3 = ∂σ4 = σ1 − σ2,
∂σ5 = ∂σ6 = σ3 − σ4.

This information is recorded in matrix D of Figure 1. The coboundary map is given as follows:

δσ∗1 = −δσ2 = σ∗3 + σ∗4,

δσ∗3 = −δσ∗4 = σ∗5 + σ∗6,

δσ∗5 = δσ∗6 = 0.

This information is recorded in matrix D⊥ of Figure 1.

The relative homology and cohomology persistence modules are defined as the homology of the
persistence modules

(Cn/C) : Cn → (Cn/C1) → (Cn/C2) → . . . → (Cn/Cn−1)

(Cn/C)∗ : C∗n ← (Cn/C1)
∗ ← (Cn/C2)

∗ ← . . . ← (Cn/Cn−1)∗

with boundary and coboundary maps induced from ∂, δ in the natural way. Thus

C∗(X∞,X) = (Cn/C, ∂), C∗(X∞,X) = ((Cn/C)∗, δ).

H∗(X∞,X) = H(Cn/C, ∂), H∗(X∞,X) = H((Cn/C)∗, δ).

Remark. We note that the maps → of C and the maps ← of (Cn/C)∗ are injective, whereas the
maps ← of C∗ and the maps → of (Cn/C) are surjective. In other words, absolute homology and
relative cohomology are structurally akin to each other; and qualitatively different from absolute
cohomology and relative homology. This is a symptom of the global duality mentioned in the
introduction.

The main theorem of [1, 3] can be restated in the following way.

Theorem 2.6. Given C, ∂ as above, there exists a partition

{1, 2, . . . , n} = F tG tH
with a bijective pairing G↔ H, written as follows:

g is paired with h ⇔ [g, h) ∈ Pairs = Pairs(C, ∂).

Moreover, there is a new basis σ̂1, σ̂2, . . . , σ̂n of Cn such that:

(1) Ci = 〈σ̂1, . . . , σ̂i〉 for all i.



8

(2) ∂σ̂f = 0 for all f ∈ F .
(3) ∂σ̂h = σ̂g, and hence ∂σ̂g = 0, for all [g, h) ∈ Pairs.

It follows that the persistence diagram Pers(H(C, ∂)) consists of the intervals [af ,∞) for f ∈ F
together with the intervals [ag, ah) for [g, h) ∈ Pairs. �

We note that item (1) is equivalent to the assertion that the leading term of each σ̂i is σi (up to
a nonzero scalar).

In the language of [1], the index set F identifies the positive simplices which remain unpaired,
the index set G identifies the positive simplices which do get paired, and the index set H identifies
the negative simplices. The vectors σ̂f and σ̂g are the cycles with leading terms σf and σg, and
the vector σ̂h is the chain with leading term σh which ‘kills’ the homology class of its paired σ̂g by
means of the equation ∂σ̂h = σ̂g.

Example. In our running example, F = {1, 6}, G = {2, 4}, H = {3, 5} and Pairs = {[2, 3) , [4, 5)}.
The new basis is

σ̂1 = σ1, σ̂3 = σ3, σ̂5 = σ5,

σ̂2 = −σ2 + σ1, σ̂4 = −σ4 + σ3, σ̂6 = σ6 − σ5.

The reader can easily verify that ∂σ̂1 = ∂σ̂2 = ∂σ̂4 = ∂σ̂6 = 0, that ∂σ̂3 = σ̂2, and ∂σ̂5 = σ̂4.

Proof of Proposition 2.4. The decomposition {1, 2, . . . , n} = F t G t H and the new basis
σ̂1, σ̂2, . . . , σ̂n allow us to express C as a direct sum of persistent chain complexes:

C =
⊕
f∈F

Cf ⊕
⊕

[g,h)∈Pairs
Cg,h

where Cf = 〈σ̂f 〉 and Cg,h = 〈σ̂g, σ̂h〉. Moreover, the boundary map ∂ respects this decomposition,
mapping each summand into itself. We can therefore calculate H((Cn/C), ∂) on each summand
separately.

For summands of type Cf , the persistence modules are constant over two phases, with index
ranges {0, . . . , f − 1} and {f, . . . , n− 1}. We can condense this information by representing them
as two-term persistence modules (one term for each index range):

((Cf )n/Cf ) : 〈σ̂f 〉 → 0

Ker(∂) : 〈σ̂f 〉 → 0

Im(∂) : 0 → 0

H = Ker(∂)/ Im(∂) : 〈σ̂f 〉 → 0

It follows that H((Cf )n/Cf ) contributes the interval [−∞, af ). This is generated by [σ̂f ] and hence
has the same homological dimension as [af ,∞) in Pers(H(C)).

For summands of type Cg,h the persistence modules are constant over three phases, with index
ranges {0, . . . , g − 1}, {g, . . . , h− 1} and {h, . . . , n− 1}:

((Cg,h)n/Cg,h) : 〈σ̂g, σ̂h〉 → 〈σ̂h〉 → 0

Ker(∂) : 〈σ̂g〉 → 〈σ̂h〉 → 0

Im(∂) : 〈σ̂g〉 → 0 → 0

H = Ker(∂)/ Im(∂) : 0 → 〈σ̂h〉 → 0

It follows that H((Cg,h)n/Cg,h) contributes a single interval, [ag, ah). This is generated by [σ̂h], and
hence has dimension one greater than [ag, ah) in Pers(H(C)), that being generated by [σ̂g]. �



9

The following table summarises the relationship between the three types of generator and the
persistence intervals they generate.

generator σ̂f σ̂g σ̂h
absolute homology [af ,∞) [ag, ah)
relative homology [−∞, af ) [ag, ah)+

The homological dimension of each interval is equal to the homological dimension of its generator.
So, for any pair [g, h) ∈ Pairs, the dimension of [ag, ah) in H∗(X∞,X) is one greater than the
dimension of [ag, ah) in H∗(X). We indicate this in the table with a + subscript.

2.7. Cohomology. Persistent relative cohomology is structurally similar to persistent absolute
homology. To make this apparent, let us introduce new notation, writing

C⊥ : C⊥1 → C⊥2 → . . . → C⊥n
for the reverse of the sequence

(Cn/C)∗ : C∗n ← (Cn/C1)
∗ ← . . . ← (Cn/Cn−1)∗,

so C⊥i = (Cn/Cn−i)∗.
Recall that σ∗1, . . . , σ

∗
n denotes the basis of C∗n dual to the basis σ1, . . . , σn of Cn. If we write

τi = σ∗n+1−i, then

C⊥i = (Cn/Cn−i) = 〈σ∗n, σ∗n−1, . . . , σ∗n+1−i〉 = 〈τ1, τ2, . . . , τi〉
by elementary linear algebra. Moreover, if ∂σj =

∑
i<j Dijσi then δτj =

∑
i<j D

⊥
ijτi. where D⊥ij =

D(n−j),(n−i).
On account of the formal similarity between C⊥ and C we conclude:

Corollary 2.7. Suppose we have an algorithm which takes as input the sequence of cells σ1, . . . , σn
and their boundaries ∂σ1, . . . , ∂σn and produces as output the persistent absolute homology of X =
σ1 ∪ · · · ∪ σn.

Then the same algorithm applied to the sequence of formal cells τ1, . . . , τn and coboundaries
δτ1, . . . , δτn computes the persistent relative cohomology of X. �

Persistent absolute cohomology can be thought of as ‘relative persistent relative cohomology’.
More precisely, by elementary linear algebra:

Proposition 2.8. The persistence module (C⊥n /C
⊥) is the reverse of C∗, and the respective cobound-

ary maps agree. �

Corollary 2.9. Suppose we have an algorithm which takes as input the sequence of cells σ1, . . . , σn
and their boundaries ∂σ1, . . . , ∂σn and produces as output the persistent relative homology of X =
σ1 ∪ · · · ∪ σn.

Then the same algorithm applied to the sequence of formal cells τ1, . . . , τn and coboundaries
δτ1, . . . , δτn computes the persistent absolute cohomology of X. �

Remark. We must transcribe the indices correctly for these two corollaries. If such an algorithm
applied to the τi, δτi produces a persistence interval [p, q − 1] for C⊥ then this is equivalent to
[n+ 1− q, n− p] for (Cn/C)∗, and hence to the half-open real interval [an+1−q, an+1−p).

Suppose now we apply Theorem 2.6 to C⊥ to obtain a partition {1, 2, . . . , n} = R t S t T and
new generators τ̂i, with δτ̂r = 0, δτ̂s = 0, and δτ̂t = τ̂s for pairs [s, t) ∈ Pairs(C⊥, δ). Then we
obtain the following table:



10

generator τ̂r τ̂s τ̂t
relative cohomology [−∞, an+1−r) [an+1−t, an+1−s)+

absolute cohomology [an+1−r,∞) [an+1−t, an+1−s)

By considering Proposition 2.3, we deduce that

R = n+ 1− F, S = n+ 1−H, T = n+ 1−G
and moreover (s, t) ∈ Pairs(C⊥, δ) if and only if (n+ 1− t, n+ 1− s) ∈ Pairs(C, ∂). Actually, this
can also be inferred from the proof of the following proposition.

Proposition 2.10. Let σ̂∗1, . . . , σ̂
∗
n denote the dual basis to σ̂1, . . . , σ̂n, and write τ̂i = σ̂∗n+1−i. Then

the τ̂i are the generators described above (up to nonzero scalar multiples).

Proof. By duality, we have δσ̂∗f = 0 for all f ∈ F , and δσ̂∗g = σ̂∗h for all [g, h) ∈ Pairs(C). Moreover,
σ∗i is the trailing term of σ̂∗i . The proposition now follows, by bookkeeping. �

2.8. A remark for the algebraically-minded. According to [3], a persistence module can be
regarded as a graded module over the ring k[t]. In particular, C can be regarded as a free module
over k[t] with n generators, σ1, . . . , σn, where σi has degree i. The boundary map ∂ : C → C is
then a homomorphism of graded modules.

The ‘dual’ of such a module can be taken with respect to the ground field k or the polynomial
ring k[t]. Thus we can define the global dual

C◦ = Homk[t](C,k[t]),

where C◦n = graded-module homomorphisms C→ k[t] of degree n;

and the pointwise dual

C† = Homk(C,k),

where C†n = vector-space homomorphisms C−n → k.

These can be regarded as graded k[t]-modules in a natural way. Moreover, the operations −◦ and
−† are contravariant functors, so in particular the boundary map on C induces boundary maps on
the new modules.

The interested reader can verify that

H(C, ∂) = persistent absolute homology of X

H(C†, ∂†) = persistent absolute cohomology of X

H(C◦, ∂◦) = persistent relative cohomology of X

H(C◦†, ∂◦†) = persistent relative homology of X

up to calibrating the indices.

3. Matrix Algorithms

3.1. The boundary matrix. We can represent a filtered cell complex (at least, its homological
information) by a strictly upper-triangular matrix D, whose entries D[i, j] are the coefficients Dij

of the boundary map ∂ defined in Section 2.6. Thus the j-th column D[j] = D[.., j] represents ∂σj .
With the cells listed in the filtration order, the matrix D also encodes the filtration of the complex.
Indeed, the top-left square submatrix D[1..i, 1..i] is the boundary matrix for Xi = σ1 ∪ · · · ∪ σi, or,
equivalently, the chain complex Ci. Thus D is a representation of the chain complex for persistent
absolute homology, C∗(X) = (C, ∂).



11

If we flip the matrix D across its minor diagonal, we get the anti-transpose D⊥, formally
defined by D⊥[i, j] = D[n + 1 − j, n + 1 − i]. Following the discussion in Section 2.7, we see that
D⊥ represents the cochain complex for persistent relative cohomology, C∗(X∞,X) = ((Cn/C)∗, δ).
The top-left submatrix D⊥[1..i, 1..i] is the coboundary matrix for C∗(X∞, Xn−i). Indeed, this is
precisely the full coboundary matrix with entries in Xn−i removed.

It immediately follows that any procedure applied to matrix D that computes the intervals and
generators of persistent absolute (resp. relative) homology, when applied to matrix D⊥ will give us
the intervals and generators of persistent relative (resp. absolute) cohomology.

3.2. Persistence by matrix decomposition. In [8], Cohen-Steiner et al. explain how to view
the computation of persistent homology as a matrix decomposition problem, finding a factorization
D = RU , where matrix R is reduced and U is invertible upper-triangular. Here we recap the
relevant definitions.

For any matrix A, we define lowA(j) to be the index of the lowest non-zero entry in the j-th
column of A (that is, the largest index i such that A[i, j] 6= 0); it is undefined if the column is zero.
We say that matrix R is reduced if lowR is injective (over its domain of definition).

In what follows it is more convenient to look at the inverse of U , matrix V = U−1. The
decomposition D = RU becomes R = DV . Whereas neither decomposition is unique, Cohen-
Steiner et al. [8] show that the map lowR is. It is precisely this map that gives the persistence
pairing: a class born at the step g of the filtration dies at the step h iff lowR(h) = g.

Suppose we have a decomposition R = DV . If the column R[i] = 0 (so lowR(i) is undefined),
then the column V [i] is a cycle, by definition. Furthermore, since V is invertible upper-triangular,
its diagonal entries are non-zero, and V [i] is a cycle that does not exist in Xi−1, i.e. it is exactly the
cycle born at H∗(Xi). Similarly, if R[j] 6= 0, then it is the cycle that falls in the kernel of the map
H∗(Xj−1)→ H∗(Xj), and V [j] is the chain that appears in Xj and has that cycle as its boundary.

3.3. Homology generators. To relate the matrix discussion to the algebra of the previous section,
we observe that the new basis of Theorem 2.6 appears in the matrices R and V . The generator σ̂f
of the infinite interval [af ,∞) is the column V [f ]; the generator σ̂g of the interval [ag, ah) is the
column R[h]; the chain σ̂h that kills it is the column V [h].

Example. See Figure 1 for the matrices R,D, V of our running example. The map lowR gives
the absolute homology persistence intervals Pers(H∗(S)) = {[1,∞)0, [2, 3)0, [4, 5)1, [6,∞)2} where
the subscript indicates the dimension of the homology class. Columns of the matrices V and R
give the cycles generating each of the intervals: they are σ̂1 = V [1] = σ1, σ̂2 = R[3] = σ1 − σ2,
σ̂4 = R[5] = σ3 − σ4, and σ̂6 = V [6] = σ6 − σ5, respectively.

In view of Proposition 2.4, we can also read off the generators for persistent relative homology:
the column V [f ] is the generator for the interval [−∞, af ), and the column V [h] is the generator for
[ag, ah) (the chain that it represents becomes a relative cycle in H∗(X∞, Xg), and remains nonzero
until H∗(X∞, Xh)).

Example. The four intervals of Pers(H∗(S6,S)) = {[−∞, 1)0, [2, 3)1, [4, 5)2, [−∞, 6)2} have respec-
tive generators σ̂1 = V [1] = σ1, σ̂3 = V [3] = σ3, σ̂5 = V [5] = σ5, and σ̂6 = V [6] = σ6 − σ5.

3.4. Cohomology generators. We now take the global dual, and consider persistent relative and
absolute cohomology. This time we compute the decomposition R⊥ = D⊥V ⊥ for the anti-transpose
D⊥ of D.

We must take care to track the indices correctly. As a matrix, the rows and columns of D⊥

are labelled {1, . . . , n} in the usual order. However, row i and column i refer to cell σn+1−i in the



12

1 2 3 4 5 6
1
2
3
4
5
6

1
-1-1

-1-1

1

1 1

1
-1

-1
1

1 2 3 4 5 6 1 2 3 4 5 6
1

1
1

1
1

1
-1

-1=

DR V

·

1-1
-1

-1
-1

1

1
1

-1

-1

1
1

1
1

1
1

=

D⊥R⊥ V ⊥

·

1 2
3

4

5

6

-1

-1 1

1

123456 123456 123456

1
2
3
4
5
6

Figure 1. Filtration of a sphere, and the corresponding decompositions R = DV
and R⊥ = D⊥V ⊥. Maps lowR and lowR⊥ are shown with squares around the entries.
We show only the non-zero entries of the matrices.

original complex. If we define i∗ = n+ 1− i, then we can think of the rows and columns as being
labelled {n∗, . . . , 1∗}, so that row i∗ and column i∗ do indeed refer to cell σi. The numerical labels
in Figure 1 for D⊥, R⊥, V ⊥ should be thought of as starred labels.

The columns of R⊥ and V ⊥ contain the cocycles of H∗(X∞,X) and the cochains that kill them.
If lowR⊥(g∗) = h∗, then there is a finite interval [ag, ah) generated by the cocycle σ̂∗h = R⊥[g∗]
and killed by the cochain σ̂∗g = V ⊥[g∗]. If R⊥[f∗] = 0, then there is an infinite interval [−∞, af )

generated by σ̂∗f = V ⊥[f∗].

Example. The persistent relative cohomology Pers(H∗(S6,S)) has four intervals [−∞, 6)2, [4, 5)2,
[2, 3)1, [−∞, 1)0, generated respectively by σ̂∗6 = V ⊥[6∗] = σ∗6, σ̂∗5 = R⊥[4∗] = −σ∗6 − σ∗5, σ̂∗3 =
R⊥[2∗] = −σ∗3 − σ∗2, σ̂∗1 = V ⊥[1∗] = σ∗1 + σ∗2.

Finally, we can read off the generators for persistent absolute cohomology H∗(X): when R⊥[f∗] =
0, the column V ⊥[f∗] is the cocycle which generates the interval [−∞, af ); and when lowR⊥(g∗) = h∗,
the column V ⊥[g∗] is the cocycle which generates [ag, ah).

Example. The persistent absolute cohomology Pers(H∗(S)) has four intervals [6,+∞)2, [4, 5)1,
[2, 3)0, [1,+∞)0 generated respectively by σ̂∗6 = V ⊥[6∗] = σ∗6, σ̂∗4 = V ⊥[4∗] = σ∗4, σ̂∗2 = V ⊥[2∗] = σ∗2,
σ̂∗1 = V ⊥[1∗] = σ∗1 + σ∗2.

3.5. Column and row algorithms. The original persistence algorithm [1, 3] finds the pairing by
processing matrix D column-by-column to obtain the reduced matrix R. In the context of R = DV
decomposition, one can express it as:

Algorithm 1 Column algorithm pHcol.

R = D;V = I
for i = 1 to n do

while ∃ j < i with lowR(j) = lowR(i) do
c = R[i][lowR i]/R[j][lowR j]
R[i] = R[i]− cR[j]
V [i] = V [i]− cV [j]

Here the definition of the constant c ensures that the lowest non-zero element in column i moves
up after each iteration of the while loop. The condition of the while loop immediately implies



13

that matrix R is reduced when the algorithm terminates. Furthermore, since we perform identical
updates on R and V , we get an R = DV decomposition.

The algorithm pHcol is essentially Gaussian elimination performed using column operations.
More commonly one would use column operations, processing the matrix row-by-row from the
bottom up:

Algorithm 2 Row algorithm pHrow.

R = D;V = I
for i = n down to 1 do

indices = [j | lowR(j) = i] # lows in the row i of R

p = indices[0] # pivot

for j ∈ indices[1..] do
c = R[j][lowR j]/R[p][lowR p]
R[j] = R[j]− cR[p]
V [j] = V [j]− cV [p]

It is not difficult to see that this algorithm also produces an R = DV decomposition where matrix
R is reduced, and matrix V is invertible upper-triangular. What is less immediate is that the
two algorithms produce identical decompositions, so we prove this fact formally. (Notice that the
statement would not be true if, during pHrow, we tried to cancel all non-zero elements in row i
of R, rather than restricting attention to the columns picked out by indices.)

Theorem 3.1 (Identical Output Theorem). The decompositions Rc = DVc and Rr = DVr produced
by column and row algorithms respectively are identical, i.e. Rc = Rr and Vc = Vr.

Proof. We observe that once it determines the lowest non-zero element in a given column of matrix
R, neither algorithm changes that column in any subsequent operations. Given a matrix R = D
we prove the claim by induction. The first column with the lowest non-zero entry in R is not
modified by either algorithm. Suppose that the columns with the lowest non-zero entries below i
are identical in both Rc and Rr, and Vc and Vr. During the computation of the column with the
lowest non-zero entry in row i we add columns with lowR > i in a decreasing order dictated by
the lowest non-zero entry of the column. Since the order and the columns are identical, so is the
result. �

Remark. Recently Milosavljevic, Morozov, and Skraba [11] showed that one can compute persistence
in matrix multiplication time.

Remark. One can apply the two algorithms of this section to the restricted matrix Dp that gives
only the boundaries of the p-dimensional cells. We can still extract some information from the
Rp = DpVp decomposition of this matrix: the finite intervals [g, h) in dimension p − 1 and the
births in dimension p, i.e. the endpoints g or h of any p-dimensional interval.

4. Optimizations

4.1. Cohomology algorithm. One of our goals has been to relate our present work to an algo-
rithm pCoh for persistent absolute cohomology that we described in [6]. We based that algorithm
on the idea of maintaining a right filtration (defined in [12]); as a result it looks different from
pHcol and pHrow above. In fact, we now show that one can view pCoh as an optimization of pHrow
applied to the matrix D⊥. We begin by reviewing the algorithm:



14

Algorithm 3 Cohomology algorithm pCoh.

Z⊥ = [], birth = []
for i = 1 to n do

indices = [j | σ∗i ∈ δz∗j , z∗j unmarked in Z⊥]
if indices are empty then

prepend σ∗i to Z⊥ and i to birth
else

prepend a marked σ∗i to Z⊥ and i to birth
p = indices[0]
for j = 1 to size(indices) do
c = (δZ⊥[indices[j]])[i]/(δZ⊥[p])[i]
Z⊥[indices[j]] = Z⊥[indices[j]]− cZ⊥[p]

mark Z⊥[p] and output the pair [birth[p], i)

=

R⊥ D⊥ V ⊥

0

Figure 2. The structure of matrices R⊥ = D⊥V ⊥ during the execution of the row algorithm.

List Z⊥ maintains the cocycle basis for H∗(Xi) in the right filtration order dictated by the filtration
of the space. The marking above is for exposition only, in practice we drop a cocycle from the list
Z⊥ as soon as it dies. When a new cell σi enters, it is necessarily a cocycle (since it has no cofaces),
but it may fall into a coboundary of a former cocycle, in which case (the else clause) we update the
right filtration and drop the cocycle that σi kills.

To see that this algorithm is a variation of the row algorithm from the previous section, observe
that the cocycles that it maintains are stored in the bottom-right corner of matrix V ⊥ during the
execution of the row algorithm.

Claim 4.1. The matrix Z⊥ in the cohomology algorithm after iteration i is equal to the bottom-right
corner of the matrix V ⊥[(n− i)..n, (n− i)..n] after the i-th iteration of the row algorithm.

Proof. We prove the claim inductively. Denoting with R⊥i , V
⊥
i , Z

⊥
i the various matrices after i

iterations of both algorithms, assume the unmarked cocycles z∗j in Z⊥i are exactly the cocycles with

lowR⊥(j) > i. In other words, the corresponding columns R⊥i [j] = 0. Furthermore assume that the
two matrices are identical, i.e. V ⊥i = Z⊥i . The claim is true when i = 0. Our goal is to show it is
true for i = k assuming it is true for i = k − 1.

At the k-th iteration, if cell σ∗k does not appear in the coboundary of any cocycle, then its row

in R⊥k−1 = δV ⊥k−1 = δZ⊥k−1 is zero. It follows that it is not in the image of the map lowR⊥k−1
and

therefore neither algorithm performs any changes, so V ⊥k = Z⊥k , and unmarked cocycles remain as
claimed.

If cell σ∗k is in the coboundary of a cocycle z∗j then k is in the image im lowR⊥k−1
. Moreover, from

the inductive hypothesis the indices j of the columns of R⊥k−1 that have lowR⊥k−1
(j) = i are exactly



15

the unmarked cocycles in Z⊥k−1 that have σ∗k in their coboundary. Therefore, the update performed
by both algorithms is identical. �

Remark. Since the matrix R contains the final persistence pairing, expressed as the map lowR, the
algorithm pHcol is commonly optimized to keep track only of this matrix (and ignore matrix V ).
In contrast, pCoh maintains only matrix Z⊥ = V ⊥.

4.2. Practice. The algorithm pCoh above highlights the difference between the column and the
row versions of the persistence algorithm. pHcol stores all the dead cycles since it has no choice:
any of them might be required at some future point in the reduction. pHrow, on the other hand,
is able to ‘examine the future’ by inspecting any chosen row. It is therefore free to drop a column
once it has determined its pairing and used it in the update. pCoh does so explicitly.

In practice, such row access may be difficult when computing homology: it requires quick ac-
cess to the coboundary of a given cell (since that is what a row of D is). In simplicial complex
implementations it is common to represent simplices as lists of vertices; then their boundary maps
are easy to compute on the fly, while their coboundaries require a full preprocessing of the entire
boundary matrix. By switching to cohomology we turn the tables: all the primitives necessary
for the row algorithm (and in particular the optimized version given in this section) are readily
available.

4.3. Experiments. The practical improvement resulting from these observations is startling. In
the following table we compare the traditional persistent homology algorithm pHcol with the coho-
mology algorithm pCoh. We list the total number of operations performed (in terms of primitive
operations during chain arithmetic), total running time, and peak space usage in terms of the
number of elements stored.

Dataset Algorithm Operations Time Peak elements

M-50 pCoh 2,171,909,275 106 s 575,758
pHcol 609,477,028,616 4160 s 6,461,866

T-10,000 pCoh 55,930,317 6 s 22,629
pHcol 29,760,159,689 207 s 693,031

We used the C++ library Dionysus [13] to perform the above experiments. The homology algo-
rithm pHcol in the above table computes only the matrix R since it suffices to extract the barcode.
It also uses the original optimization of [1] and stores the non-zero coefficients only in the rows that
correspond to the positive cells. M-50 is a filtration of an 8-skeleton of a Rips complex built on
50 random points of a Mumford dataset [14, 15] up to the maximum pairwise distance of 1.5; the
largest complex consists of 663,901 simplices. T-10,000 is an alpha shape filtration of 10,000 points
sampled on a torus embedded in R3; the size of the Delaunay triangulation is 557,727 simplices.
The speed-up is encouraging. We would like to point out that these examples are not cherry-picked:
we have yet to find a filtration on which pHcol is the faster of the two.

Conclusion. When combined, the algebraic and experimental observations suggest that if given
a choice, one is better off using the cohomology algorithm. Most of the time one has such a choice:
for example, when computing only the persistence diagram.

References

[1] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. Discrete
and Computational Geometry, 28(4):511–533, 2002.

[2] Gunnar Carlsson. Topology and data. American Mathematical Society, 46(2):255–308, 2009.



16

[3] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete and Computational Geometry,
33(2):249–274, 2005.

[4] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete and
Computational Geometry, 37(1):103–120, 2007.

[5] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leo Guibas, and Steve Oudot. Proximity of persistence
modules and their diagrams. In Proceedings of the Annual Symposium on Computational Geometry, pages 237–
246, 2009.

[6] Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent cohomology and circular coordinates.
Discrete and Computational Geometry, 45(4):737–759, 2011.

[7] Vin de Silva and Robert Ghrist. Coordinate-free coverage in sensor networks with controlled boundaries via
homology. International Journal of Robotics Research, 25(12):1205–1222, December 2006.

[8] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by updating persistence
in linear time. In Proceedings of the Annual Symposium on Computational Geometry, pages 119–126, 2006.

[9] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.
[10] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using poincaré and lefschetz

duality. Foundations of Computational Mathematics, 9(1):79–103, 2009.
[11] Nikola Milosavljevic, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in matrix multiplication

time. In Proceedings of the Annual Symposium on Computational Geometry, pages 216–225, 2011.
[12] Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathematics, 10(4):367–

405, 2010.
[13] Dmitriy Morozov. Dionysus library for computing persistent homology. http://www.mrzv.org/software/

dionysus.
[14] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian. On the local behavior of spaces of

natural images. International Journal of Computer Vision, 76(1):1–12, January 2008.
[15] Ann B. Lee, Kim S. Pedersen, and David Mumford. The nonlinear statistics of high-contrast patches in natural

images. Technical Report APPTS #01-3, Division of Applied Mathematics Brown University, December 2001.

http://www.mrzv.org/software/dionysus
http://www.mrzv.org/software/dionysus

	1. Introduction
	1.1. Outline of paper

	2. Algebra
	2.1. Coefficients
	2.2. Filtered complexes
	2.3. Persistent homology
	2.4. The four standard persistence modules
	2.5. Barcode isomorphisms
	2.6. Persistent chain complexes
	2.7. Cohomology
	2.8. A remark for the algebraically-minded

	3. Matrix Algorithms
	3.1. The boundary matrix
	3.2. Persistence by matrix decomposition
	3.3. Homology generators
	3.4. Cohomology generators
	3.5. Column and row algorithms

	4. Optimizations
	4.1. Cohomology algorithm
	4.2. Practice
	4.3. Experiments

	References

