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Abstract—Today’s science campaigns consist of multiple tasks
with wide-ranging data and computing requirements, and rarely
are all the required capabilities found in current in situ workflow
systems. In this work, we explore providing increased capabilities
for scientific computing by bringing new capabilities to in situ
workflows: a flexible interface for workflow specification, hetero-
geneous task placement, and dynamic changes to the workflow
task graph. We evaluate our approach using materials science
and cosmology use cases. Our results show that our approach
(i) can save time and resources in science workflows exhibiting
dynamic patterns by enabling dynamic workflow changes during
their lifetime; (ii) enables easier specification of large-scale
workflows consisting of subgraphs and ensemble computations;
(iii) efficiently coordinates heterogeneous tasks by enabling free
intermixing of time and space partitioning, thus resulting in time
and space savings.

Index Terms—HPC, In Situ Workflows, Dynamic Workflows,
Heterogeneous Workflows

I. INTRODUCTION

In recent years, we have witnessed increased complexity of
scientific computing workflows coupled with a dramatically
increasing gap between the computation and I/O capabili-
ties of high-performance computing (HPC) systems. These
trends make traditional manual postprocessing of scientific
data generated by HPC applications infeasible. Automated
in situ processing, i.e., in situ workflows, is the prominent
alternative to the traditional post hoc approach, automating
data analysis at simulation time while minimizing I/O.

One major capability lacking in current in situ workflow
solutions is the ability to dynamically add and remove re-
sources to accommodate changes in requirements of science
applications [1]. For instance, new analysis tasks may need
to be launched on-the-fly as materials simulations evolve
because the discovery of a superconducting vortex may require
additional analysis codes to track the feature [2].

Another required capability of in situ scientific workflows
often lacking is the support for flexible intermixing of task
placement and data transfer methods. Coupling of in situ tasks
can take two different forms: (1) tasks executing sequentially
on the same resource (called time partitioning) or (2) tasks ex-
ecuting concurrently on separate resources (called space parti-
tioning). Both coupling types are used by the HPC community,
with time-space tradeoffs between them. For example, users
with a limited set of resources may opt for time partitioning,
while users with strict performance requirements may choose
space partitioning. Being able to switch seamlessly between

coupling types is needed to support a variety of different
science use cases. In particular, heterogeneity of different tasks
in the same workflow can require mixing of time and space
partitioning on a task-by-task basis.

Scientific workflows can be complex and large scale with
ensembles consisting of multiple instances of repeated sub-
graphs of tasks. Hence, another required capability of in
situ scientific workflows is to provide a flexible workflow
specification interface to define such workflows. This interface
should capture the global view of the entire workflow while
being easy to use. Since workflow specification is closely
tied to workflow execution, having a flexible interface can
also facilitate efficient runtime execution. Also, the workflow
interface needs to be scalable, handling small graphs of a
few tasks such as a simulation coupled to a small number
of analyses; to large graphs of high-throughput tasks such as
an ensemble of subworkflows.

Motivated by these needs of today’s science campaigns, in
this work we present our approach to dynamic heterogeneous
task specification and execution for in situ workflows. In order
to address the above challenges, we combined some features
from two existing in situ systems: Decaf [3] and Henson [4];
where Decaf is a parallel in situ dataflow system1, and Henson
is a cooperative multi-tasking system.2 Our approach provides
the following advantages:

• Flexible workflow specification interface to define com-
plex scientific workflows.

• Support for both shared- and distributed-memory com-
munication in concert with flexible intermixing of time-
and space-partitioning task placement.

• Support for dynamic workflow changes depending on the
requirements of the workflow tasks.

We evaluate our solution with two science use-cases. In
the first case, motivated by materials science, we launch an
ensemble of multiple molecular dynamics simulation instances
to observe a rare nucleation event, requiring dynamic workflow
changes driven by the detection of the event. The second
problem is motivated by computational cosmology, where the
workflow is a parameter space exploration consisting of four
different tasks—synthetic particle generation, Voronoi tessel-
lation, density estimation, and rendering—that are heteroge-
neous in their data and computation requirements. Our results

1https://github.com/tpeterka/decaf
2https://github.com/henson-insitu/henson



demonstrate that our approach provides new capabilities for
in situ analysis such as flexible workflow interface, dynamic
workflow changes, and heterogeneous task placement.

The remainder of this paper is organized as follows. Sec-
tion II presents background and related work. Section III
describes our methodology for increased capabilities for in
situ scientific workflows. Section IV presents our experimental
methodology, followed by experimental results in Section V.
Section VI concludes the paper with a summary and a brief
look at future work.

II. BACKGROUND AND RELATED WORK

In recent years, in situ workflows have gained popularity
in the HPC community. In situ workflows run within a single
HPC system, and the data exchange is done through mem-
ory or the supercomputer interconnect during the scheduled
execution of a job [5]. Here, we review related work in task
placement, data communication, task scheduling, and dynamic
aspects.

Because our focus is in situ processing, we present back-
ground and related work for in situ workflows, and we do not
cover distributed or cloud-based workflows in this section. We
refer the reader to several survey papers presenting taxonomies
of representative distributed workflow systems [6], [7].

A. Task Placement

We can characterize in situ solutions according to the task
placement mode that they support. For instance, Libsim [8]
employs the time partitioning mode for performing in situ
analysis and visualization for the VisIt visualization tool [9].
Similarly, Catalyst [10] exposes the simulation data in situ
to ParaView [11], and the in situ processing happens on
the same resources as the simulation. On the other hand,
FlexPath [12] provides a publish/subscribe model to exchange
data between parallel codes running on separate resources.
DataSpaces [13] provides a distributed memory space for
enabling space partitioning support, where workflow tasks can
both push data into this space and retrieve from it.

Some approaches support both time and space partitioning.
For example, ADIOS [14], originally designed for I/O staging,
can now couple tasks through an I/O interface with different
task placement modes. Users usually set the task placement
mode in a configuration file. While we also support both time
and space partitioning placement modes in a transparent way
to the user, we support freely intermixing these different task
placement modes in the same workflow.

Some works study the impact of the task placement mode
efficiency. Kress et al. [15] compare the efficiency of time and
space partitioning modes for scientific visualization in terms
of time to solution and total cost. They indicate that none of
these task placement methods is superior in all scenarios, and
the best choice depends on many factors such as type and
scalability of the visualization algorithms.

B. Data Communication Mechanisms

In situ workflows run within a single HPC system, and com-
municate over shared memory or through the interconnect of
the machine. VisIt’s Libsim and Paraview’s Catalyst libraries
support shared-memory communication between analysis and
visualization tasks running synchronously with the simulation,
in the same address space. Damaris/Viz [16] splits the MPI
communicator of the simulation to allocate dedicated cores for
performing visualization tasks. Messages between simulation
and visualization tasks are allocated in a shared-memory
buffer. On the other hand, Decaf [3] is a middleware for
coupling parallel tasks in situ by creating communication
channels over HPC interconnects through MPI. Some in situ
solutions offload the data to a distributed memory space that
is shared among multiple workflow tasks. DataSpaces and
FlexPath implement such a communication mechanism using
a publisher/subscriber model.

Some systems can support several data communication
mechanisms by employing in situ tools with different data
exchange methods. SENSEI [17], an in situ system designed
with tool portability in mind, allows for multiple commu-
nication methods by interfacing with different in situ tools.
While we also support several communication mechanisms
including shared- and distributed-memory communication, our
approach is generic and is not tailored for a specific category
of applications, such as visualization.

C. Task Scheduling

The majority of HPC in situ tools schedule workflow
tasks onto resources by relying on a static configuration
file for the workflow specification. The static nature of task
scheduling in these tools makes it difficult to support complex
scientific workflows with task graphs that evolve over time.
One exception is Henson [4], [18], a cooperative multitasking
system for in situ processing that uses shared objects and
coroutines as its main abstractions, together with a built-in
scripting language. Through these features, Henson provides
extra flexibility in scheduling the workflow tasks. Workflows
can also be specified using a programming language, such
as Swift/T [19], which schedules tasks based on the data
dependencies in the program. Swift/T can support complex
workflows; however, the user code has to be organized and
compiled into Swift modules.

D. Dynamic Workflow Changes

This aspect of in situ workflows remains largely unexplored,
with few research efforts. One recent work is the Flexpath
publish/subscribe system, which can accommodate analysis
task arrivals/departures. However, the experiments in Dayal
et al. [12] demonstrate only static 2- or 3-task linear pipelines
with a fixed number of MPI ranks per task. Melissa [20]
is a parallel client/server architecture for the analysis of
ensembles, where independent simulation groups can connect
dynamically to the parallel server when they start. This system
is limited to changing the number of simulation instances,
not performing generic changes to the workflow task graph



  …
... ...

(a) End-to-end workflow

orchestrator aggregatorsubgraph

SUBGRAPH: consumerproducer

fan-out fan-in

(b) Simplified view of an end-to-end
workflow

Fig. 1. Ensemble of workflow graphs with normal and simplified views.

such as adding/deleting other tasks. One way of bringing
dynamic features to in situ workflows is to combine them
with distributed-area workflows that support dynamic work-
flow changes. Recent work [21] employs Decaf workflows
as single tasks of a PyCOMPSs distributed workflow [22],
extending Decaf in situ workflows with dynamic features.
Being a distributed workflow designed for clouds and grids,
however, PyCOMPSs has performance limitations such as data
exchange through files and serial completion of dependent
jobs, which we want to avoid when executing in situ on HPC
platforms.

III. METHODOLOGY

In this section, we discuss how our approach addresses these
challenges: workflow graph description, heterogeneous task
placement, and workflow dynamics.

A. Workflow Graph Description

The first challenge is how to specify workflows, in particular
complex and large-scale ones. Our approach borrows Decaf’s
Python API, where users can define the different nodes and
edges of a workflow task graph and the number of processes
assigned to each workflow task. This workflow specification
is done prior to the launch of the workflow, and read upon
initialization. In Section III-C, we will see how we can modify
this workflow graph at runtime to support workflows with task
graphs that evolve over time.

Specifying large-scale workflows such as an ensemble of
tasks shown in Figure 1(a) is a challenge when describing the
graph, because such workflows have too many tasks to list
explicitly in a workflow configuration file. Also, users may
want to vary the number of the ensemble instances, making it
desirable to represent each instance as a single entity that is
repeated some number of times. In our Python API, we intro-
duce a subgraph feature to represent each ensemble instance,
and to describe the end-to-end workflow as a composition of
these subgraphs with other tasks in the workflow.

Figure 1(b) shows this simplified view of an end-to-end
workflow graph that the user specifies in a Python script, rather
than explicitly describing all the tasks and edges in Figure 1(a).
Listing 1 is a snippet of workflow configuration file defining
an ensemble of workflows using this simplified view. The
user first defines the subgraph by indicating its nodes, edges,
and resource requirements. Second, the user indicates the
number of ensemble instances. Third, the user describes the
end-to-end workflow graph, by defining other tasks in this
workflow, and declaring the communication channels between

import networkx as nx

# Subgraph definition
subgraph = nx.DiGraph()
subgraph.add_node("producer", start_proc=0, nprocs=4, ...)
subgraph.add_node("consumer", start_proc=4, nprocs=1, ...)
subgraph.add_edge("producer", "consumer", ...)

N = 3 #multiplicity of the subgraph

# End-to-end workflow definition
w = nx.DiGraph()
w.add_node("orchestrator", start_proc=0, nprocs=1, ...)
w.sub_graph(subgraph, N)
w.add_node("aggregator", start_proc=16, nprocs=1, ...)

# Fan-out and fan-in declaration between
# multiple subworkflows and orchestrator/aggregator tasks
w.fan_out(orchestrator, subgraph, N, ...)
w.fan_in(subgraph, aggregator, N, ...)

wf.processGraph("workflow.json")

Listing 1. Snippet of workflow configuration file defining an ensemble of
workflows.

ensemble instances and these tasks (e.g., fan-out, fan-in). For
instance, the orchestrator task can send different configuration
parameters to multiple instances (fan-out), and the aggregator
task can collect information from these instances (fan-in).
Then, we generate the end-to-end workflow specification based
on this simplified view.

B. Heterogeneous Task Placement

Scientific workflows usually consist of tasks that are het-
erogeneous in their data and computation requirements. Such
tasks can favor different task placement modes (time or space
partitioning) depending on their requirements; hence, there
is a need for flexibility in task placement. We support both
time and space partitioning modes, and can freely intermix
these different task placement modes transparently in the same
workflow.

We automatically detect the task placement mode based on
the location of the tasks, described in the workflow configura-
tion file. Specifically, users provide the starting process rank of
the task together with its name, number of processes, and its
arguments when defining the task in the configuration file. Our
approach uses the starting process rank to detect the placement
mode of the tasks: time partitioning when the coupled tasks
have the same starting process, and space partitioning when
the tasks have a different starting process.

Our approach uses the most direct communication mech-
anism among the coupled tasks: shared memory when time
partitioned, and message passing when space partitioned.

For shared-memory communication, we inherit Henson’s
execution model, where individual codes are compiled as
shared objects. This allows us to load multiple position-
independent shared objects in the same address space, letting
them access each others’ memory directly. Therefore, tasks
can exchange data by simply passing pointers to each other,
with zero copies and no changes to their code.

For distributed-memory communication, we create parallel
communication channels over MPI, an association of a pro-
ducer, a consumer, and a communication object to exchange
data between the producer and the consumer. Producers and
consumers are parallel programs, each with their own MPI
communicator. We create an additional communicator between



the producer and the consumer for the data exchange. Mes-
sages are passed in parallel, point-to-point from producer ranks
to consumer ranks, without aggregating at the root of either
the producer or the consumer, and redistributing data between
different numbers of producer/consumer processes.

C. Dynamic Workflow Changes

Scientific workflows may exhibit complex dynamic patterns,
requiring the capability to perform workflow changes at run
time. Such workflow changes may include adding and deleting
tasks and scheduling the placement of workflow tasks with
respect to time and space partitioning and shared or distributed
memory. To support such dynamic workflow changes, we
designed a controller module.

A controller module is programmable by the user just like
any other workflow task, and it can be either a separate task
or incorporated into existing workflow tasks. The controller
provides a simple API to reconfigure the workflow depending
on the changes in the requirements of the workflow tasks.
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Fig. 2. Illustration of two possible ways of supporting dynamic workflow
changes.

We investigated two options in designing the API for
the controller: global- or task-level. Figure 2 highlights the
difference between these options. The first one is a global-
level API that enables defining the workflow programmatically
at the workflow specification level (i.e., by programming
the workflow master code). With the global-level API, the
workflow engine is exposed to the user via the workflow
master code, giving the user maximum flexibility for dynamic
workflow changes. However, we decided that this also intro-
duces additional complexity for users to manage the control
logic for such changes. In particular, this control logic involves
defining the interactions between workflow tasks and the
runtime engine at the global level when the workflow is recon-
figured. Examples of such interactions include checkpointing
or restarting workflow tasks, and reconfiguring communication
links between workflow tasks.

The second solution, that we ultimately elected, is a task-
level API implemented as a controller module. Here, the
workflow is initially defined by a static Python script and
later modified via the API of the controller. We opted for the
controller API since it hides the control logic from the user
by providing a set of predefined commands (e.g., changeTask,

addTask) for managing interactions between workflow tasks
and the runtime engine.

The controller API enables three different dynamic work-
flow changes: i) looping until the desired solution is reached,
ii) redistribution of MPI ranks among the tasks of the workflow
graph, and iii) adding or deleting tasks to the workflow graph.
Workflow tasks are initially launched based on the static work-
flow configuration file, as described in Section III-A. Upon a
modification request to the workflow graph, the controller first
checks whether these changes leave the workflow in a valid
state (e.g., correct total number of processes is maintained).
If the request is valid, the controller then broadcasts the
new workflow graph to the other workflow tasks. Workflow
execution then continues with this new workflow graph. This
control logic continues until the user issues a shutdown call
via the controller API.

IV. EXPERIMENTS

Our experiments were conducted on the Bebop cluster at Ar-
gonne National Laboratory, which has 1,024 computing nodes.
We employed nodes belonging to the Broadwell partition. The
nodes in this partition are outfitted with 36-core Intel Xeon
E5-2695v4 CPUs and 128 GB of DDR4 RAM. All nodes are
connected to each other by an Intel Omni-Path interconnection
network.

A. Science Use Cases

1) Materials Science: The materials science problem we
study is nucleation as a material cools and crystallizes; in
this case water freezing, but the same workflow applies to
nucleation in many other material systems. Understanding the
mechanisms and kinetics of crystallization is key to under-
standing a wide range of natural and technological systems.
Nucleation, however, is a stochastic event that requires a
large number of molecules to elucidate its kinetics. Capturing
nucleation in simulations is difficult, especially during the
early stages when only a few atoms have crystallized.

One way to simulate nucleation is to run many instances
of small simulations. Given its stochastic nature, nucleation
may be observed in only a few of these simulation instances.
Manually managing such ensemble workflows can be bur-
densome for scientists who need to run and analyze many
simulation instances. Our approach allows us to fully automate
this science pipeline, where scientists can define the task graph
using our subgraph API, and use the controller API to steer the
workflow based on the results thus far. The result is a dynamic
workflow graph, with as many instances of simulation and
analysis tasks as are needed to detect a rare nucleation event.

Figure 3 shows this workflow graph, where each simulation
instance consists of the LAMMPS [23] molecular dynam-
ics model coupled to a parallel diamond structure detector
developed in [21]. Detection of nucleated atoms requires
identifying the different phases of ice: hexagonal, cubic, and
amorphous/liquid. The controller task checks whether one
of the simulation instances exceeded the required minimum
number of nucleated atoms, as detected by the diamond
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structure detector. Looping continues until there is a success-
ful nucleation event or a maximum number of iterations is
reached. When the number of nucleated atoms exceeds a user-
specified threshold, the controller launches the renderer tasks
in order to visualize the nucleation. The renderer tasks are
launched only when there are enough nucleated atoms. Each
of the LAMMPS and diamond detector tasks in Figure 3 are
parallel MPI programs written in C++, while the controller
task is a serial C++ program. Each of the visualization tasks
are serial Python programs.

2) Cosmology: The second use case is motivated by cos-
mology; in particular, density estimation in gravitational lens-
ing for investigating dark matter. Density estimation is a
transformation from discrete particle data to a continuous
density function defined over a 3D or 2D field. In this use case,
we consider two different density estimators: cloud in cell
(CIC) and tessellation (TESS) [24]. CIC estimates the density
directly from the particle data while TESS first performs a
Voronoi tessellation before computing the density. The latter
results in more accurate density estimate, but comes at a higher
cost due to the expensive computation of Voronoi tessellations.

Different estimators with cost-accuracy tradeoffs raise the
question of which one to use when computing lensing sim-
ulations, given problem size and computational budget [24].
We automated the decision-making process by performing a
parameter sweep for different problem configurations (number
of particles, cutoff constant) using different density estimators.

Figure 4 shows this workflow graph for density estimation
with two different branches, one for each density estimator,

import networkx as nx
w = nx.DiGraph()

# Task declaration
w.add_node("inputGenerator", start_proc=0, nprocs=1, ...)
w.add_node("dense-cic", start_proc=0, nprocs=1, ...)
w.add_node("tess", start_proc=1, nprocs=4, ...)

# Dataflow declaration
w.add_edge("inputGenerator", "dense-cic", ...)
w.add_edge("inputGenerator", "tess", ...)

wf.processGraph("workflow.json")

Listing 2. Snippet of workflow configuration file with two different placement
modes.

CIC and TESS. The inputGenerator task generates a synthetic
dataset to mimic characteristics of actual data in computational
cosmology simulations. The tessellation and density estimator
(tess, dense-cic and dense-tess) codes are built on the Tess
library [25], which in turn is built on the DIY data-parallel
programming model [26]. The render task generates a 2D
density image by projecting from a 3D density volume. In this
parameter sweep, the tessellation and density estimator codes
are parallel MPI C++ programs, while the inputGenerator and
the render tasks are serial Python programs.

One advantage of our approach is that workflow tasks are
agnostic to their placement mode, since we can automati-
cally detect the task placement mode based on the workflow
configuration file. Listing 2 presents a sample workflow con-
figuration generating different placement modes for different
density estimators. For instance, we detect the coupling mode
of inputGenerator and dense-cic as time partitioning since
they have the same starting process rank, creating a shared-
memory communication channel between these tasks. On the
other hand, a distributed-memory communication channel is
created between inputGenerator and tess tasks because they
are running on separate resources. This intermixing of task
placement requires no change in the task code; the user simply
modifies the workflow configuration file, which generates the
workflow graph.

V. RESULTS

A. Dynamic Workflow Changes

To evaluate our capability to enable dynamic workflow
changes, we studied the nucleation problem, where we ran
multiple instances of simulation and analysis, as shown in
Figure 3. Here, we show the benefits of reallocating resources
(MPI ranks) between simulation and analysis tasks depending
on the simulation behavior.

Redistributing resources among the workflow tasks: Sci-
entific workflows display dynamic behaviors during the course
of their execution, and resources may need to be redistributed
among the workflow tasks in response to these changes. When
simulating nucleation, only a few atoms crystallize for much
of the simulation’s run time; hence, the analysis of early time
steps requires less computation than the later ones. Ideally,
we would like to reallocate resources between simulation and
analysis tasks once the simulation starts producing interesting
results such as nucleation.



To investigate the benefits of resource reallocation, we
compared the workflow completion time and overall resource
usage of the nucleation problem with static allocation versus
dynamic reallocation. We ran 5 instances of LAMMPS and
the diamond detector concurrently. In the static case, each
LAMMPS instance used 28 MPI processes, and each detector
used 7 processes. For dynamic reallocation, we start with 34
processes for LAMMPS and one process for the diamond
detector; and we reallocate resources to 28 LAMMPS and 7
diamond detector processes once number of nucleated atoms
exceeds a desired threshold.3

We used a controller module as a separate task, and dedi-
cated one process to the controller for managing the control
of the workflow and triggering dynamic reallocation based on
the simulation behavior.

We ran LAMMPS for 5,000,000 time steps with a water
model composed of 4,360 atoms, and we performed the dia-
mond structure analysis every 10,000 iterations. Table I shows
the workflow completion time and overall resource usage for
static and dynamic allocation of workflow tasks. With dynamic
allocation, MPI processes are adjusted at time step 4,000,000,
with LAMMPS reducing from 34 to 28 processes, and the
diamond detector increasing from 1 to 7 processes. The results
demonstrate that dynamic reallocation saves 10% time and
resources. This dynamic resource reallocation does not require
any changes to the workflow task codes, and we rely on the
checkpoint and restart ability of LAMMPS when performing
the resource reallocation. For simulations without such an
ability, existing checkpoint tools such as VeloC [27] can be
used for checkpoint and restart.

Allocation scheme Workflow completion time Resource requirements
Static allocation 4,650 seconds 226.0 core-hours

Dynamic reallocation 4,170 seconds 203.9 core-hours

TABLE I
WORKFLOW COMPLETION TIME AND OVERALL RESOURCE USAGE FOR

STATIC AND DYNAMIC ALLOCATION OF WORKFLOW TASKS WHEN
STUDYING NUCLEATION.

To further investigate the simulation behavior under these
different allocation schemes, we plot in Figure 5 the LAMMPS
throughput (timesteps per second) during its different phases.
We note that the LAMMPS throughput is lower in the begin-
ning for both approaches due to the several initialization steps
such as energy minimization of the system. We observe that
dynamic allocation outperforms the static allocation on aver-
age by 15% until resource reallocation happens at time step
4,000,000 (at 80% of the simulation lifetime). The benefits
of dynamic reallocation depends on several factors such as
the time when the workflow is reconfigured and the amount
of resources that are redistributed among the workflow tasks.
Next, we perform two sets of experiments to highlight the
impact of these factors.

3We performed a profiling study to find the optimal number of processes for
the diamond detector with two different behaviors of the simulation: before
and during nucleation.
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a) Impact of workflow reconfiguration time: We study
the relationship between the dynamic allocation and the time
when the workflow is reconfigured. Instead of performing the
resource reallocation once the number of nucleated atoms
exceeds a desired threshold, we configured the controller
module to trigger the resource reallocation at three different
times: 60%, 80%, and 90% of the simulation lifetime.

Figure 6 shows the resource usage and workflow completion
time of static and dynamic allocation, with resource real-
location happening at different times during the simulation.
As expected, we see that the resource usage and workflow
completion time decreases if the workflow is reconfigured later
in simulation’s lifetime. For example, dynamic reallocation
at 90% of the simulation lifetime saves 5% more time and
resources compared with reallocating at 60% of the simulation
lifetime. This is because nucleation happens relatively late
in the simulation lifetime, highlighting the fact that dynamic
reallocation can have larger benefits when interesting phenom-
ena (e.g., nucleation) occur in only a small duration of the
simulation lifetime.

b) Impact of resource requirements of the workflow tasks:
The optimal amount of resources (re)allocated to workflow
tasks depends on the resource requirements of each task. To
study the impact of the resource requirements of the work-
flow tasks on the dynamic reallocation, we set two different
resource distributions between LAMMPS and the diamond
detector. In the first scenario, we assigned 17 processes to
both LAMMPS and the diamond detector statically (SA(1:1)).
In the second scenario, we assigned 28 processes to LAMMPS,
and 7 processes to the diamond detector statically (SA(4:1)).
For dynamic reallocation, we started with 34 processes for
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LAMMPS and one process for the diamond detector; and
we reallocated resources either evenly (DA(1:1)) or to 28
LAMMPS and 7 diamond detector processes (DA(4:1)) once
number of nucleated atoms exceeds a desired threshold.

Figure 7 shows the resource usage and workflow completion
times for static and dynamic allocation under these scenarios.
We observe that the benefit of dynamic reallocation is larger
when a higher amount of resources is redistributed between
LAMMPS and the diamond detector. For example, when these
tasks have the same resource requirements, DA(1:1) saves 35%
time and resources compared with the SA(1:1). On the other
hand, these savings are 10% when DA(4:1) compared with
SA(4:1). This is because more resources are reallocated when
analysis tasks have higher resource requirements, making
dynamic reallocation more beneficial.

B. Free Mixing of Time and Space Partitioning

We performed a parameter sweep for the density estimation
with TESS and CIC branches by varying the following param-
eters: number of particles and the cutoff constant. We used
104, 105, and 106 particles estimated onto a 512x512 output
grid, and we employed 1, 10, and 100 as the cutoff constant.
These parameter ranges resulted in 9 different parameter
sweep instances for each density estimator. Figure 8 shows
the density image for CIC and TESS density estimators in
one of these parameter sweep instances. As expected, we
see that TESS achieves better accuracy compared with CIC,
but this comes with 5 times higher performance cost. By
automating the parameter exploration, our approach allows
users to determine the appropriate density estimator depending
on their needs and computational budget.

Approach End-to-end execution time Storage requirements
Our approach 435 seconds 3 MB

Traditional (post hoc) 725 seconds 1.2 GB

TABLE II
TIME AND STORAGE TAKEN BY DIFFERENT APPROACHES FOR RUNNING

THE PARAMETER SWEEP.

Comparison with the traditional (post hoc) approach:
Table II shows that automating the parameter sweep saves time
and storage, compared with the traditional way of manually
running each workflow task in sequence. The tessellation
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Fig. 8. Density images computed from 106 particles estimated onto a 512x512
output grid with two different density estimators.

Placement mode End-to-end execution time Tessellation time
Time partitioning 1170 seconds 540 seconds

Space partitioning 650 seconds 540 seconds

TABLE III
TIME TAKEN BY DIFFERENT PLACEMENT MODES FOR RUNNING THE TESS

BRANCH.

task has the longest execution time, hence, it dominates
the parameter sweep. We reduced the end-to-end execution
time 40% by running the density estimation concurrently
with tessellation. We obtained further time savings due to
running the CIC branch in parallel with the TESS branch.
Additional savings can be gained by employing more branches
in the parameter sweep, for different density estimators, or for
different combinations of parameters.

Our approach also reduces the I/O time by communicating
through shared memory or MPI instead of files between the
workflow tasks. This results in significant storage savings,
where we only need to store the rendered image files, requiring
only 3 MB storage space. On the other hand, using files
for communication requires storing the particle positions for
density estimation. This occupies 1.2 GB of storage, 400 times
higher than our approach.

Impact of the placement mode: Workflow tasks used in
this parameter sweep have different requirements, in particular
tess and dense-cic. Tess has two times higher memory footprint
than dense-cic, and dense-cic has a much shorter execution
time. Hence, dense-cic can be coupled in time partitioning
mode, while the high time and memory cost of tess makes the
space partitioning mode more suitable for it.

To highlight the impact of the placement mode on the TESS
branch (upper part of the workflow graph in Figure 4), we
measured the end-to-end execution time for a total of 10 runs
with 106 particles estimated onto a 512x512 grid. Table III
shows that coupling tess with inputGenerator and dense-tess
in time partitioning is 45% slower compared with coupling it
in space partitioning. This is because we can hide the times
required for inputGenerator and dense-tess tasks by running
tess asynchronously in space partitioning. By enabling free
intermixing of time and space partitioning, our approach can
efficiently coordinate these heterogeneous tasks in a single
workflow.



VI. CONCLUSION

Today’s scientific workflows are becoming increasingly
complex with heterogeneous tasks and varying data and com-
putation requirements. In this work, we demonstrated that we
can support complex science problems, where our approach
brings new capabilities to in situ solutions such as flexible
workflow definition, support for free mixing of time and space
partitioning, and dynamic workflow changes.

In the future, we plan to extend our support for dynamic
workflow changes. First, we will explore the integration of
external inputs (e.g., human- or AI-in-the-loop) to the work-
flow system for steering the workflow at run time. A second
direction that we will investigate involves global workflow
resource changes, which would require resizing the entire
workflow, rather than reallocating a fixed set of resources
among the tasks. One might want to upscale or downscale the
total workflow resources depending on several factors, such
as system failures or workload changes. Here, checkpointing
tools can enable resizing the workflow, and coordination of
such tools with in situ workflow systems is another possible
direction of future research.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research, under contracts number DE-AC02-06CH11357
and DE-AC02-05CH11231. We gratefully acknowledge the comput-
ing resources provided on Bebop, a high-performance computing
cluster operated by the Laboratory Computing Resource Center at
Argonne National Laboratory.

REFERENCES

[1] M. Dorier, O. Yildiz, T. Peterka, and R. Ross, “The challenges of elastic
in situ analysis and visualization,” in Proceedings of the Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization, 2019, pp. 23–28.

[2] H. Guo, T. Peterka, and A. Glatz, “In situ magnetic flux vortex visualiza-
tion in time-dependent ginzburg-landau superconductor simulations,” in
2017 IEEE Pacific Visualization Symposium (PacificVis). IEEE, 2017,
pp. 71–80.

[3] M. Dreher and T. Peterka, “Decaf: Decoupled dataflows for in situ
high-performance workflows,” Argonne National Laboratory, Argonne,
IL (United States), Tech. Rep., 2017.

[4] D. Morozov and Z. Lukic, “Master of puppets: Cooperative multitasking
for in situ processing,” in Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing.
ACM, 2016, pp. 285–288.

[5] T. Peterka, D. Bard, J. C. Bennett, E. W. Bethel, R. A. Oldfield,
L. Pouchard, C. Sweeney, and M. Wolf, “Priority research directions for
in situ data management: Enabling scientific discovery from diverse data
sources,” The International Journal of High Performance Computing
Applications, p. 1094342020913628, 2020.

[6] J. Yu and R. Buyya, “A taxonomy of workflow management systems
for grid computing,” Journal of grid computing, vol. 3, no. 3-4, pp.
171–200, 2005.

[7] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future generation computer systems, vol. 25, no. 5, pp. 528–540, 2009.

[8] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In Situ
Coupling of Simulation with a Fully Featured Visualization System,” in
Proceedings of the 11th Eurographics Conference on Parallel Graphics
and Visualization, ser. EGPGV ’11. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2011, pp. 101–109. [Online].
Available: http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109

[9] S. Ahern, E. Brugger, B. Whitlock, J. S. Meredith, K. Biagas, M. C.
Miller, and H. Childs, “Visit: Experiences with sustainable software,”
arXiv preprint arXiv:1309.1796, 2013.

[10] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “ParaView Catalyst: Enabling in situ data analysis
and visualization,” in Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization.
ACM, 2015, pp. 25–29.

[11] J. Ahrens, B. Geveci, and C. Law, “36 paraview: An end-user tool for
large-data visualization,” The Visualization Handbook, p. 717, 2005.

[12] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-based pub-
lish/subscribe system for large-scale science analytics,” in 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting. IEEE, 2014, pp. 246–255.

[13] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction
and coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[14] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible io and integration for scientific codes through the adaptable
io system (adios),” in Proceedings of the 6th international workshop on
Challenges of large applications in distributed environments, 2008, pp.
15–24.

[15] J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszki, S. Klasky,
H. Childs, and D. Pugmire, “Comparing the efficiency of in situ
visualization paradigms at scale,” in International Conference on High
Performance Computing. Springer, 2019, pp. 99–117.

[16] M. Dorier, R. R. Sisneros, T. Peterka, G. Antoniu, and D. B.
Semeraro, “Damaris/Viz: a nonintrusive, adaptable and user-friendly
in situ visualization framework,” in IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV), Atlanta, United States, Oct.
2013, conference. [Online]. Available: https://hal.inria.fr/hal-00859603

[17] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie, and
E. Bethel, “The SENSEI generic in situ interface,” in Proceedings of
the 2nd Workshop on In Situ Infrastructures for Enabling Extreme-scale
Analysis and Visualization. IEEE Press, 2016, pp. 40–44.
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