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Abstract. The elevation function on a smoothly embedded2-manifold in R
3

reflects the multiscale topography of cavities and protrusions as local maxima.
The function has been useful in identifying coarse docking configurations for
protein pairs. Transporting the concept from the smooth to the piecewise linear
category, this paper describes an algorithm for finding all local maxima. While
its worst-case running time is the same as of the algorithm used in prior work,
its performance in practice is orders of magnitudes superior. We cast light on this
improvement by relating the running time to the total absolute Gaussian curvature
of the2-manifold.

1 Introduction

This paper introduces a new algorithm for computing all local maxima of the elevation
function defined on a2-manifold embedded inR3. This function has been introduced
by Agarwal et al. [4] for the purpose of improving the prediction of protein interaction
through docking. The approach identifies protrusions (knobs) and cavities (wells) on
the two surfaces and matches them up. This idea goes back to Connolly [12] who used
a function that maps each point of the protein surface to the fraction of a fixed-radius
sphere centered at the point that lies outside the protein volume. As shown by Cazals
et al. [6], this function resembles the mean curvature at thepoint in the limit, when
the radius approaches zero. The fixed radius makes a choice ofthe scale the function
reflects.

The elevation function introduced in [4] serves the same purpose, but in contrast to
Connolly’s function, the elevation is scale independent and marks small as well as large
protrusions of varying shape and direction. Its construction is based on the persistence
structure of the2-parameter family of height functions, as explained in the next section.
The task at hand is then the computation of all local maxima for two proteins and the use
of the type, size, and location of the marked topographic features to identify promising
positions for interaction. The experimental study in [23] shows that this approach is
effective in finding initial positions that can then be refined by local optimization. The
computationally most expensive step in this study is the determination of the elevation
maxima. Using the algorithm in [4], the running time for a triangulated2-manifold with
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m edges is proportional tom5 log2 m. Since typical proteins give rise to surfaces with
hundreds of thousands of edges, the quintic dependence onm is a serious drawback
that limits the practical deployment of the method.

In this paper, we give a new algorithm that is faster for triangulated surfaces ap-
proximating smooth surfaces that we typically find in practice. They are characterized
by having dihedral angles at edges that are close to half the full angle (molecular skin
surface [14]). We relate the running time of our algorithm tothe total absolute Gaus-
sian curvature of the surface and this way determine that we can expect roughly a
ten-thousand fold improvement over the running time of the old algorithm. We note,
however, that we offer no improvement in the worst-case performance.

Since we incorporate the surface complexity in terms of total absolute Gaussian
curvature into the analysis of the algorithm, it is worth mentioning that there is a large
literature on the notion of curvatures for triangulated surfaces. We refer to [2] and [17,
22] for details.

Outline. In Section 2, we introduce the geometric and topological background needed
to understand the elevation function. We do this in two steps, discussing the mathemati-
cally cleaner smooth case in Section 2.1 and the computationally more useful piecewise
linear (PL) case in Section 2.2. In Section 3, we present the algorithm for computing all
elevation maxima, along with some implementation details and the analysis. In Section
4, we present our experimental results, employing our software to compute elevation
maxima for a number of triangulated protein surfaces. We gather statistics on critical
regions, pairwise intersections, and elevation maxima. Weuse these statistics as evi-
dence that our assumption is a reasonable approximation of the reality for our data and
that the new algorithm runs about four orders of magnitude faster than the old one.

2 Preliminaries

2.1 The Smooth Case

Morse functions. The class of smooth, real-valued functions is a challengingobject
that simplifies considerably if we add genericity as a requirement. Lettingf : M → R

be a smooth function on a2-manifold, a pointx ∈ M is critical if the derivative at
x equals zero. The value off at a critical point is acritical value. All other points
areregular pointsand all other values areregular valuesof f . A critical point isnon-
degenerateif the Hessian, that is, the matrix of second partial derivatives at the point
is invertible. In this case, the matrix has two non-zero eigenvalues,λ1 6= λ2, and the
indexof the non-degenerate critical point is the number of negative eigenvalues. A non-
degenerate critical point of index0 is aminimum, of index1 is asaddle, and of index2
is amaximum. Finally,f is aMorse functionif all its critical points are non-degenerate
and its values at the critical points are distinct. Given a valuea ∈ R, the corresponding
sublevel setconsists of all points with value at mosta, Ma = f−1(−∞, a]. Sweeping
the manifold in the direction of increasing function value,we get a1-parameter family
of sublevel sets. The topology of the sublevel set changes precisely when the sweep
passes through a critical point. Lett1 < t2 < ... < tn be the ordered sequence of



critical values and−∞ = s0 < s1 < ... < sn = ∞ a sequence of interleaved values,
that is,si < ti+1 < si+1, for all i. By assumption off being Morse, we get from the
sublevel set atsi to the one atsi+1 by passing exactly one non-degenerate critical point.
The change can be characterized in terms of the dimension of the handle we attach to
go fromMsi

to Msi+1
. For index0, we add a0-handle, that is, an isolated point which

we then thicken to a disk. For index1, we add a1-handle, that is an interval attached
to the boundary of the sublevel set at its endpoints which we then thicken to a strip.
Finally, for index2, we add a2-handle, that is, a disk attached to the boundary of the
sublevel set along its boundary circle.

Persistent homology.Looking at the homology groups [18] of the sequence of sublevel
sets, we use the concept of persistence to measure the lengths of the intervals along
which homology classes exist [15]. Since sublevel sets between two contiguous critical
values are indistinguishable, we may consider the finite sequence

∅ = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M,

where we simplify notation by settingMi = Msi
. Fixing a dimensionp (p ≥ 0), each

sublevel set has ap-th homology group and the sequence is connected from left to
right by homomorphisms induced by inclusion, which we denote asf i,j

p : Hp(Mi) →

Hp(Mj). We have abirth atMi if the mapf i−1,i
p is not surjective, and we have adeath

at Mj if the mapf j−1,j
p is not injective. Furthermore, the death atMj corresponds

to the birth atMi if there is homology classγ in Hp(Mi) that is not in the image
of f i−1,i

p , its image inHp(Mj−1) is still not in the image off i−1,j−1
p , but its image

in Hp(Mj) is in the image off i−1,j
p . We call f(tj) − f(ti) the persistenceof this

birth-death pair. As explained in [8], this method gives a pairing between births and
deaths that has many interesting properties. Each death corresponds to a unique birth
but not every birth corresponds to a death. To remedy this shortcoming, we extend the
sequence of homology groups for extended persistence as described in [9]. Writing
M

a = f−1[a,∞) for thesuperlevel setof a, we go up with absolute homology groups
of sublevel sets, as before, and we come back down with relative homology groups,

0 = Hp(M0) → Hp(M1) → . . . → Hp(Mn)

→ Hp(M, Mn) → . . . → Hp(M, M0) = 0,

where we simplify notation by settingMi = M
si , M

0 = M andM
n = ∅. Now every

birth corresponds to a death. In fact, we have two events at every critical point, one going
up and one coming down, but duality implies that we just get each pair twice, see [9].
As a consequence of duality, the birth-death pairs we get forthe negative function,−f ,
are the same. This turns out to be important in the definition of the elevation function.

For2-manifolds, there is a more elementary way to introduce extended persistence
using the Reeb graph of the function. Instead of giving details, we refer to [4] and we
mention that this approach leads to a fast algorithm. It consists of constructing the Reeb
graph in a sweep [10] followed by deconstructing it in another sweep using cutting and
linking trees [4, 16]. We run this algorithm for a piecewise linear function on a triangu-
lated2-manifold. Lettingm be the number of edges in the triangulation, as before, the



running time computing the extended persistence for a givenheight function is bounded
by some constant timesm log2 m.

Elevation. To define elevation, we assume the2-manifoldM is smoothly embedded
in R

3. For a directionu ∈ S
2, we consider the height functionhu : M → R defined

by hu(x) = 〈x, u〉. Generically,hu is a Morse function, but for some directionsu it is
not, either because a critical point is degenerate or because two or more critical points
map to the same height value. Considering the entire sphere of directions, we get a
2-parameter family of height functions.

For eachu ∈ S
2, we pair up births with deaths using the extended sequence of

homology groups defined by the sublevel and the superlevel sets of hu. In the Morse
function case, each birth-death pair identifies two critical points,x andy, one giving
birth and the other giving death, and we define the elevation at these two points as their
persistence or, equivalently, the absolute height difference in the directionu, E(x) =
E(y) = |hu(x) − hu(y)|. Each point ofM is critical in two directions,u and−u, and
is thus assigned two values, the absolute height differenceto the paired critical point in
the two directions. Sinceh−u = −hu, the paired point is the same so we get a unique
value at every point. This is theelevation functionof the2-manifold,E : M → R.

To get a feeling for this function, we consider a protrusion (a mountain) of the
2-manifold. To measure the height of the mountain, we measurefrom the top down,
to the first saddle that separates it from an even higher mountain. We can do this in
various directions, so we do it to maximize the height. This might be in a direction
along which the first saddle is ambiguous. Perhaps there are three such saddles at the
same height value in this direction, similar to the third type in Figure 1 in which we
have a saddle with the same height difference to three minima. In this direction, we
have two violations of genericity required for Morse functions, because there are three
critical points with the same height value. Indeed, local maxima of E tend to arise
along non-generic directions. An exception is the1-legged maximum defined by only
two critical points (with one leg between them). Besides this case, we have 2-legged
maxima defined by three critical points, and3- and4-legged maxima defined by four
critical points each; see Figure 1.

Curvature. We will later discover that the running time of our algorithmfor finding
all local maxima relates to the total absolute curvature of the surface. We introduce this
concept using theGauss map, N : M → S

2, defined by mapping a pointx of M to the
outer unit normal,N(x), at x. AssumingM is smoothly embedded inR3, the Gauss
map is continuous and surjective but not necessarily injective. Indeed, the preimage of
u ∈ S

2 consists of all critical points ofhu with outer normalu, as opposed to−u.
The multiplicity ofN atu and−u together is thus the number of critical points ofhu.
We will see shortly that the total coverage ofS

2 is exactly the total absolute Gaussian
curvature ofM.

Letting x be a point ofM andr > 0 a radius, we define theabsolute Gaussian
curvatureat x by taking the limit of a fraction of areas,g(x) = limr→0

Area(N(Ar))
Area(Ar) ,

whereAr is the neighborhood of points at distance at mostr fromx onM. Thetotal ab-
solute Gaussian curvatureis the integral of the local quantity,G(M) =

∫

x∈M
g(x)dx.



Fig. 1: The four generic types of local maxima of the elevation function. From left to right: the
1-, 2-, 3- and4-legged maximum.
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It should be clear thatG(M) is the area of the total coverage ofS
2, taking multiplic-

ity into account. For a given direction, the multiplicity is|N−1(u)|. Hence,G(M) =
∫

u∈S2 |N
−1(u)|du. Writing cavg for the average number of critical points of the height

functions, we thus have the total absolute Gaussian curvature equal to one half times
the area of the sphere times that average,G(M) = 2πcavg. This integral geometry
formula for the curvature will come handy in the analysis of our algorithm. For more
information on the integral geometry formulation of curvature see Santaló [21].

2.2 The PL Case

Triangulated surfaces. We do all computations on a piecewise linear approximation
of the smooth2-manifold. To transport the smooth concepts to the PL category, we
think of the PL surface as being approximated by a smooth surface. Tightening the
approximation, we get a series and take the limit. This is thegeneral intuition we have
in the background guiding the formulation of definitions in the PL case.

A triangulationof a 2-manifoldM is a simplicial complex,K, whose underlying
space is homeomorphic,|K| ≈ M. It consists of vertices, edges, and triangles. To putK
into R

3, it suffices to map each vertex to a point; the edges and triangles are the convex
hulls (of the images) of their vertices. This is ageometric realizationif the triangles
meet in shared edges and vertices but not in any other point sets. We call the result a
triangulated surface, implicitly assuming that it is geometrically realized inR3. The
star of a vertex is the set of simplices that contain it, and thelink consists of all faces
of simplices in the star that do not belong to the star,St vi = {σ ∈ K | vi ∈ σ};
Lk vi = {τ ⊆ σ ∈ St vi | τ 6∈ St vi}. A PL functionf : |K| → R is determined
by its values at the vertices. Assumingf(vi) 6= f(vj) wheneveri 6= j, we define the
lower link as the subset of simplices in the link wheref is smaller than at the vertex,
Lk−vi = {σ ∈ Lk vi | x ∈ σ ⇒ f(x) < f(vi)}. Finally, vi is regular if its lower
link is contractible, andcritical, otherwise. SinceK triangulates a2-manifold, every
link is a circle and the only contractible closed subsets arepoints and closed paths. The
lower link of a regular vertex is thus a single vertex or a pathconnecting two vertices.
A minimumis characterized byLk−vi = ∅ and amaximumby Lk−vi = Lk vi. In the
remaining case, the lower link consists ofk+1 ≥ 2 paths and we callvi ak-fold saddle,
or asimple saddleif k = 1.

In contrast to the smooth case, it is not possible to turn ak-fold into a simple saddle
by a small perturbation. We therefore treat them directly, without reduction to simple



cases. As an example, consider the Euler-Poincaré Theoremwhich relates the topology
of the2-manifold with the critical point structure of its functions. Define theindexof a
simple critical point asindex (vi), index (vi) = 0 if vi is a minimum,1 if vi is a simple
saddle,2 if vi is a maximum. AssumingK is connected, it is characterized by itsgenus
and we have2 − 2 · genus = n − m + l =

∑

i(−1)index (vi), wheren, m, l are the
number of vertices, edges, triangles inK and ak-fold saddle is represented byk simple
saddles in the sum.

Critical regions. Another significant complication we encounter in the PL caseis that
a vertex is generally critical for an entire region of directions. Lettinghu : |K| → R

be the height function defined byhu(x) = 〈x, u〉, thecritical region of a vertex is the
closure of the set of directions along whichvi is critical,

Ri = cl {u ∈ S
2 | vi is critical point ofhu}.

We construct it from the closed polygonal curve defined by thestar ofvi. Specifically,
we map each triangle in the star to its outer normal direction, a point onS

2, and we
connect the directions of two neighboring triangles by the shorter of the two connecting
great-circle arcs. This gives a closed polygonal curve,πi, which may or may not have
self-intersections. To cope with the former, more complicated case, we orientπi and
define thewinding numberof a directionu ∈ S

2 not on the curve as the number of
times the curve goes around the directed line defined byu. Viewed alongu, we count
a counterclockwise turn as+1 and a clockwise turn as−1. Taking the sum we get
the winding number, which are denoted asw(u, πi). For detailed study on polyhedron
Gauss map, refer to [5]. Examples are shown in Figure 2. The winding number ofu
relates to the type of the vertex in the height function defined by u. Specifically, ifvi

is regular then the winding number ofu is 0, if vi is a simple critical point then the
winding number is(−1)index (vi), and ifvi is ak-fold saddle then the winding number
is−k.

Curvature. Thinking of a vertex as a tiny region in an approximating smooth surface,
we define itsGaussian curvatureas the area of its critical region weighted by the wind-
ing number. More useful in this paper is itsabsolute Gaussian curvaturedefined as
the area weighted by the absolute winding number,g(vi) =

∫

u∈S2 |w(u, πi)|du. The
total absolute Gaussian curvatureis then the sum over all vertices,G(K) =

∑

i g(vi).
Equivalently, it is the area of the sphere times half the average number of critical ver-
tices, taking multiplicities into account, as usual. The average is taken over all height
functions, and we count half the critical vertices becausevi is critical foru ∈ S

2 as well
as−u ∈ S

2.

3 Computation

In this section, we describe how we compute the elevation maxima for a given trian-
gulated surface inR3. The algorithm is straightforward and the only new insight is in
the analysis, relating the running time with the total absolute Gaussian curvature of the
surface.



Fig. 2: Left: for a directionu with winding number+1 the corresponding vertex appears either as
a maximum or a minimum. Right: for winding number−1 we have a simple saddle and for−2

we have a2-fold or monkey saddle for the height function defined by the corresponding direction.
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Types and filters. Recall that there are four types of elevation maxima for a generic
smooth surface, as illustrated in Figure 1. We have the same four cases for a generic
triangulated surfaceK in R

3. Each maximum is given by a set of two, three, or four
points. We consider the case in which all these points are vertices ofK. The cases in
which some of the points inV lies on edges ofK are similar. LetV be a set of vertices.
A necessary requirement forV to define a maximum is that its vertices are critical for
a common direction. More specifically, we need them criticalin a particular direction
that is determined byV . This direction,uV = (y−x)/||y−x||, is slightly different for
each type.

1-legged case,V = {x, y}. Here,uV is the direction defined by the two points.
2-legged case,V = {x, y1, y2}. Letting y be the orthogonal projection ofx onto the

line passing throughy1 andy2, uV is defined ify lies betweeny1 andy2.
3-legged case,V = {x, y1, y2, y3}. Letting y be the orthogonal projection ofx onto

the plane passing throughy1, y2, y3, uV is defined ify lies in the triangle they span.
4-legged case,V = {x1, x2, y1, y2}. Lettingx andy be the feet of the shortest line seg-

ment connecting the line passing throughx1 andx2 with the line passing through
y1 andy2, uV is defined ifx lies betweenx1 andx2 andy lies betweeny1 andy2.

PROJECTION FILTER.The directionuV defined by the points inV is defined and
belongs to the common intersection of critical regions,uV ∈

⋂

vi∈V Ri.

Note that the non-empty intersection of the critical regions is a necessary but not
a sufficient condition for the setV to pass the Projection Filter. In turn, passing the
Projection Filter is a necessary but not sufficient condition for the directionuV to be an
elevation maximum. For that, the set needs to satisfy another condition. To describe it,
we writex0 for x.

PERSISTENCE FILTER.For each pairxi andyj in V , there is an arbitrarily small
perturbationu of uV such thatxi, yj is a birth-death pair for the height functionhu.



Algorithm. We compute the elevation maxima in three steps, starting with 2-, 3-, 4-
tupletsV whose points have pairwise overlapping critical regions. The next two steps
narrow down the selection using first the Projection and the Persistence Filter.

STEP 0. Compute the critical regions of the vertices ofK. Letting the critical regions
be the nodes of the intersection graph,R, we draw an arc if the two regions have
a non-empty common intersection. Fork = 2, 3, 4, let Qk be the set ofk-cliques,
that is, thek-tuplets of nodes connected by all

(

k
2

)

arcs. LetS0 =
⋃

k Qk.
STEP 1. Subject each pair, triplet, and quadruplet inS0 to the Projection Filter and let

S1 ⊆ S0 be the collection that passes the filter.
STEP 2. Subject each pair, triplet, and quadruplet inS1 to the Persistence Filter and let

S2 ⊆ S1 be the collection that passes the filter.

Step 1 and 2 are the same as in [4], so we focus on the implementation of Step 0 in
which we compute the2-, 3-, 4-tuplets with pairwise intersecting critical regions.

Implementation. We break down Step 0 into three smaller steps, constructing the
critical regions, finding the intersecting pairs, and computing the cliques of size2, 3,
4 in the intersection graph. Implementation is done with Perl, C and CGAL [1]. All
computations are exact except estimating the area and the bounding box of a critical
region.

STEP 0.1. Recall that each critical region,Ri, is given by a closed polygon withmi

edges on the sphere. Those edges may intersect, and we take time O(m2
i ) to con-

struct the decomposition of the sphere [13], including winding numbers for all sub-
regions. ReflectingRi centrally through the origin inR3, we get the region−Ri

of inward normals along whichvi is critical. Constructing all critical regions takes
time proportional to

∑

i m2
i .

STEP 0.2. Most critical regions are small and simple. This suggests we use a bounding
volume approach to find the intersecting pairs. Specifically, we find an axis-parallel
boxBi in R

3 that encloses the regionRi onS
2 ⊆ R

3. We do this in two steps, first
computing the smallest enclosing sphere ofRi and second the smallest axis-aligned
box that contains the sphere. Assuming thatRi fits inside a hemisphere ofS2, the
smallest enclosing sphere of its vertices also enclosesRi. To compensate for round-
off errors, we increase the sphere slightly and compute the box Bi to enclose the
enlarged sphere. Computing the smallest enclosing sphere of Ri takes randomized
time O(mi), see [24]. Given the boxesBi, we find the overlapping pairs using the
segment-tree streaming algorithm as described in [25]. Writing bi for the number
of boxes that overlapBi, we have a total ofb = 1

2

∑

i bi of overlapping pairs. The
streaming algorithm takes time proportional ton log3

2 n + b to find them. For each
pair of overlapping boxes, we check whether or not the critical region they enclose
have a non-empty intersection. Standard computational geometry methods allow
us to determine whether or notRi andRj intersect in time O(mij log mij), where
mij = m2

i + m2
j [13].

STEP 0.3. The result of Steps 0.1 and 0.2 is a graphR. Its n nodes are the critical
regions, and itsq arcs are the pairs of critical regions with non-empty overlap.



Writing q = 1
2

∑

i qi, whereqi is the degree of thei-th node, we compute the
cliques of size2, 3, 4 by checking all pairs and triplets of neighbors. Finding the
cliques that includeRi thus takes time O(

(

qi

1

)

+
(

qi

2

)

+
(

qi

3

)

).

Analysis. The time for Step 0 is dominated by the requirement for Step 0.2, which is
some constant timesTnew =

∑

i

(

qi

1

)

+
(

qi

2

)

+
(

qi

3

)

. The time for Step 1 is some constant
times|S0| ≤ Tnew and that for Step 2 is some constant timesT = |S1|n log2 n. This
adds up to some constant timesTnew + T , as compared toTold + T for the algorithm
in [4], whereTold =

(

n
2

)

+
(

n
3

)

+
(

n
4

)

. Any improvement thus hinges on two properties,
namely thatTold is significantly larger thanTnew as well asT . We now show that the
first property holds under grossly simplifying assumptions, and we provide evidence in
the next section that both properties hold for data we encounter in practice.

CAP ASSUMPTION.The critical regions are spherical caps, all of the same size, and
their centers are uniformly distributed onS2.

Recall that the areas of the critical regions add up to the total absolute Gaussian
curvature,

∑

i Area(Ri) = G(K). This sum is also half the area of the sphere times the
average number of critical points of the height functions,G(K) = 2πcavg. It follows the
area of a single critical region isArea(Ri) = 2πcavg/n, and because the cap is smaller
than the flat disk of the same radius, its radius squared isρ2 > 2cavg/n. Two caps
overlap if and only if the center of one is contained in the capof radius2ρ around the
center of the other. The area of the enlarged cap is less than four timesArea(Ri). Hence
the probability for a regionRj to overlapRi is Prob[Ri∩Rj 6= ∅] ≤ 4Area(Ri)/4π =
2cavg/n. Since expectations are additive even if the events are not independent, the
expected number ofk-tuplets of neighbors isExp[

(

qi

k

)

] ≤
(

n−1
k

)

Area(Ri)
k/πk ≤

2kck
avg/k!. Adding the expectations fork = 1, 2, 3 and alli gives

Exp[Tnew] ≤ n · (2cavg + 2c2
avg +

4

3
c3
avg).

Recall thatcavg = G(K)/2π. It follows the average number ofk-tuplets of critical
regions overlapping a given one depends on the shape of the smooth surface and not on
the size of the approximating triangulated surface. Similarly, the time for Step 0 depends
on the shape and otherwise only linearly on the number of vertices in the triangulation.

4 Experiments

Input data. We use two types of triangulated surfaces approximating smooth models
of biomolecular structures all listed in Table 1 Left. The first type is the molecular skin
which uses hyperboloid and concave sphere patches to blend between the spheres that
represent the atoms of a molecule [14]. An algorithm that constructs an approximating
triangulated surface with guaranteed bounds on two- and three-dimensional angles is
described in [7] and software written by Ho-lun Cheng is available at [3]. The second
type is the molecular surfaces generated by Chimera [19]. The MSMS algorithm used
in Chimera [20] constructs a triangulation of the solvent excluded surfaces initially
computed by Connolly [11].



Critical point statistics. For each data set, we estimate the minimum, average, and
maximum number of critical points of the height functions, which we sample at one
thousand directions chosen fromS2. The results are shown in Table 1 Middle. Com-
paring the estimated with the actual average, which we get using cavg = G(K)/2π =
∑

i Area(Ri)/2π, we see that the error is small. For example, for data set4, the esti-
matedcavg is 29.92 while the actual average is29.94. Since all our skin triangulations
approximate a smooth surface to about the same accuracy, fordifferent surfaces, the av-
erage number of critical points scales linearly withn. Indeed,cavg/n is between0.003
and0.005 for all our skin data sets.

As mentioned earlier, each vertex ofK is critical for a region of directions, in fact
two antipodal regions. Most of these regions are simple, that is, defined by a polygon
without self-intersections. As shown in the last column in Table 1, the percentage of
non-simple polygons is indeed rather small. Besides checking for self-intersections,
we measure the complexity of a critical region by counting the triangles we need to
triangulate it on the sphere. The minimum, average, and maximum of this number are
given in the right half of Table 1.

Intersection statistics. The following statistics were collected for the finer molecular
skin surfaces only. Recall that we compute the pairs of intersecting critical regions in
two steps, first finding the intersections among the boundingboxes and second among
the critical regions. Table 2 Left gives the statistics for both.

Table 1: Left: the triangulated surfaces used in our computational experiments together with their
numbers of vertices, edges, and triangles. Middle: estimated minimum, average, and maximum
of the number of critical points of the height functions. Right: minimum, average, and maximum
of the number of triangles needed to triangulate the critical regions. Last column: percentage of
non-simple critical regions. Top: molecular skin surfaces. Bottom: molecular Chimera surfaces.

id name n m ℓ cmin cavg cmax
cavg

n
rmin ravg rmax %

0 1BRS-5to6 1,370 4,104 2,736 2 6.41 160.0047 2 3.99 812
1 1CLU-DBG 3,149 9,441 6,294 2 13.50 440.0043 2 4.01 1215
2 1BRS-A-5to10 4,24812,738 8,492 6 17.07 340.0040 2 4.01 1017
3 1BRS-A-30to406,11418,33612,224 10 25.14 460.0041 2 4.01 1016
4 1BRS-A-17to257,79923,39115,594 12 29.92 640.0038 2 4.01 1020
5 1BRS-A-5to10 836 2,502 1,668 6 16.01 320.0192 2 4.08 1129
6 1BRS-A-30to401,372 4,110 2,740 10 27.13 460.0198 2 4.13 1530
7 1BRS-A-17to251,595 4,119 3,186 14 31.02 540.0194 2 4.09 1033

Given a pair of intersecting boxes, we test whether or not thecorresponding critical
regions intersect by checking the overlap among the triangles in their triangulations. The
average number of triangle-triangle checks is consistently between11 and12, which
justifies the use of this brute-force over a more sophisticated method.

Similar to the number of critical points, we expect that the average number of boxes
intersecting a given box and the average number of critical regions intersecting a given
critical region scale linearly withn. Indeed,bavg/n is between0.04 and0.07 andqavg/n



Table 2: Left: the minimum, average, and maximum number of boxes intersecting a given box; the
minimum, average, and maximum number of critical regions intersection a given critical region.
Middle: the number of cliques before and after the Projection Filter and the Persistence Filter.
Right: dominant terms in the running time of the old and the new algorithms.

id bmin bavg bmax
bavg

n
qmin qavg qmax

qavg

n
|S0|/10

3 |S1| Told/1010 Tnew/106 T/106

0 12 94 2070.069 9 40 970.029 1,608 2,373 15 24 33
1 27 204 6260.065 11 82 2500.026 32,11920,521 410 508 749
2 52 236 5560.056 20 92 2010.022 43,57217,175 1,356 720 882
3 95 243 8590.040 29 134 3300.022 198,02356,797 5,820 3,327 4,368
4 99 423 1,2760.054 35 160 5430.021 433,11694,300 15,411 7,354 9,508

is between0.02 and0.03 for all our skin data sets. The latter is about six times the
average number of critical points; compare this with the factor two we got under the
Cap Assumption. The observed relation between these two quantities is only about
three times as loose, which is reasonable considering that real data necessarily violates
the Cap Assumption to some extent (due to irregular shapes and different orientations
of the critical regions). The new algorithm starts withTnew tuplets. A back-of-the-
envelope calculation suggests thatTnew is roughlyn

(

qavg

3

)

, which is roughly a factor of
ten thousand smaller than

(

n
4

)

, independent of the value ofn. We thus might expect the
new algorithm runs about four orders of magnitude faster than the old one.

Running time. Recall thatS0 is the set of cliques of size2, 3, or 4 in the intersection
graph of the critical regions. The subsetS1 ⊆ S0 contains all cliques that pass the Pro-
jection Filter, and the subsetS2 ⊆ S1 contains all cliques that also pass the Persistence
Filter. The sizes of the first two sets are given in the middle of Table 2.

Most relevant to the running time of the algorithms for computing elevation maxima
is S1. Indeed, both the old and the new algorithm start with sets of2-, 3-, and4-tuplets
that contain the cliques inS0 and much more. As shown in Table 2 on the right, the
overestimate by the old algorithm is about ten thousand times that of the new algorithm.
Furthermore, in the new algorithm, the time for Step 0 and Steps 1 and 2 is fairly
balanced. This implies a speed-up of about four orders of magnitude, which is consistent
with back-of-the-envelope calculation mentioned above.

Conclusions. The main result of this paper is a new algorithm for computingall ele-
vation maxima of a triangulated surface inR

3. We provide experimental evidence that
for practical data, the new algorithm runs about four ordersof magnitude faster than the
old one. The improvement is achieved by making the running time dependent on the
total absolute Gaussian curvature of the surface and to a lesser extent on the number of
vertices in the approximating triangulation.
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