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Abstract. The elevation function on a smoothly embeddechanifold in R?
reflects the multiscale topography of cavities and protmssias local maxima.
The function has been useful in identifying coarse dockingfigurations for
protein pairs. Transporting the concept from the smootthéopiecewise linear
category, this paper describes an algorithm for findingadhl maxima. While
its worst-case running time is the same as of the algorithed us prior work,
its performance in practice is orders of magnitudes supéfie cast light on this
improvement by relating the running time to the total abso{Baussian curvature
of the 2-manifold.

1 Introduction

This paper introduces a new algorithm for computing all lenaxima of the elevation
function defined on &-manifold embedded ifR3. This function has been introduced
by Agarwal et al. [4] for the purpose of improving the predictof protein interaction
through docking. The approach identifies protrusions (lsh@mnd cavities (wells) on
the two surfaces and matches them up. This idea goes backtwop[12] who used
a function that maps each point of the protein surface torihetibn of a fixed-radius
sphere centered at the point that lies outside the protdiime As shown by Cazals
et al. [6], this function resembles the mean curvature atpiiat in the limit, when
the radius approaches zero. The fixed radius makes a chotbe stale the function
reflects.

The elevation function introduced in [4] serves the sam@g@se, but in contrast to
Connolly’s function, the elevation is scale independentmarks small as well as large
protrusions of varying shape and direction. Its constarcis based on the persistence
structure of the-parameter family of height functions, as explained in tegtisection.
The task at hand is then the computation of all local maximéso proteins and the use
of the type, size, and location of the marked topographitufesa to identify promising
positions for interaction. The experimental study in [2Bbws that this approach is
effective in finding initial positions that can then be refingy local optimization. The
computationally most expensive step in this study is therd@hation of the elevation
maxima. Using the algorithm in [4], the running time for atrgulate®-manifold with
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m edges is proportional to:® log, m. Since typical proteins give rise to surfaces with
hundreds of thousands of edges, the quintic dependenee isna serious drawback
that limits the practical deployment of the method.

In this paper, we give a new algorithm that is faster for tgalated surfaces ap-
proximating smooth surfaces that we typically find in pregtiThey are characterized
by having dihedral angles at edges that are close to haliutharigle (molecular skin
surface [14]). We relate the running time of our algorithnthe total absolute Gaus-
sian curvature of the surface and this way determine that aveexpect roughly a
ten-thousand fold improvement over the running time of tlieadgorithm. We note,
however, that we offer no improvement in the worst-casegrarance.

Since we incorporate the surface complexity in terms ofl tatesolute Gaussian
curvature into the analysis of the algorithm, it is worth riening that there is a large
literature on the notion of curvatures for triangulatedfaces. We refer to [2] and [17,
22] for details.

Outline. In Section 2, we introduce the geometric and topologicakgemund needed
to understand the elevation function. We do this in two stdjzgussing the mathemati-
cally cleaner smooth case in Section 2.1 and the computdlyanore useful piecewise
linear (PL) case in Section 2.2. In Section 3, we presentltaithm for computing all
elevation maxima, along with some implementation detaitstae analysis. In Section
4, we present our experimental results, employing our sofvto compute elevation
maxima for a number of triangulated protein surfaces. Waeyastatistics on critical
regions, pairwise intersections, and elevation maxima.ugdée these statistics as evi-
dence that our assumption is a reasonable approximatidreattlity for our data and
that the new algorithm runs about four orders of magnitudesfathan the old one.

2 Preliminaries

2.1 The Smooth Case

Morse functions. The class of smooth, real-valued functions is a challengingct
that simplifies considerably if we add genericity as a regmient. Lettingf : M — R
be a smooth function on Z2zmanifold, a pointr € M is critical if the derivative at
x equals zero. The value df at a critical point is acritical value All other points
areregular pointsand all other values amegular valuesof f. A critical point isnon-
degeneratéf the Hessian, that is, the matrix of second partial deinest at the point
is invertible. In this case, the matrix has two non-zero migdues,\; # Ao, and the
indexof the non-degenerate critical point is the number of negatigenvalues. A non-
degenerate critical point of indéxis aminimum of index1 is asaddlg and of index2

is amaximumFinally, f is aMorse functionf all its critical points are non-degenerate
and its values at the critical points are distinct. Givenla®a € R, the corresponding
sublevel setonsists of all points with value at mastM,, = f~*(—o0, a]. Sweeping
the manifold in the direction of increasing function value get al-parameter family
of sublevel sets. The topology of the sublevel set changesgaly when the sweep
passes through a critical point. L&t < t; < ... < t, be the ordered sequence of



critical values and-oo = sy < s1 < ... < s, = oo a sequence of interleaved values,
thatis,s; < ti+1 < siy+1, for all <. By assumption off being Morse, we get from the
sublevel set at, to the one at; 1 by passing exactly one non-degenerate critical point.
The change can be characterized in terms of the dimensidredfdandle we attach to
go fromM, to M, ,. For index0, we add &-handle, that is, an isolated point which
we then thicken to a disk. For index we add al-handle, that is an interval attached
to the boundary of the sublevel set at its endpoints whichhea thicken to a strip.
Finally, for index2, we add &-handle, that is, a disk attached to the boundary of the
sublevel set along its boundary circle.

Persistent homology.Looking at the homology groups [18] of the sequence of sudlev
sets, we use the concept of persistence to measure the dewfgthe intervals along
which homology classes exist [15]. Since sublevel sets éetvtwo contiguous critical
values are indistinguishable, we may consider the finiteisece

=My CM; C...CM, =M,

where we simplify notation by settingl; = Mj,. Fixing a dimensiomn (p > 0), each
sublevel set has a-th homology group and the sequence is connected from left to
right by homomorphisms induced by inclusion, which we derastf;7 : H,(M;) —
H,(Mj). We have airth atMj if the map/,~"* is not surjective, and we havedeath

at M if the map fJ~'/ is not injective. Furthermore, the deathldt; corresponds
to the birth atM; if there is homology class in H,(M;) that is not in the image
of fi~'7, its image inH, (M _,) is still not in the image off,~'“~', but its image
in H,(M;) is in the image off,~"7/. We call f(t;) — f(t;) the persistenceof this
birth-death pair. As explained in [8], this method gives @&ipg between births and
deaths that has many interesting properties. Each deatbspmnds to a unique birth
but not every birth corresponds to a death. To remedy thigshming, we extend the
sequence of homology groups for extended persistence asitib in [9]. Writing
M = f~1[a, 0o) for thesuperlevel sedf a, we go up with absolute homology groups
of sublevel sets, as before, and we come back down withwelatmology groups,

0=H,(My) - H,(M;y) — ... = H,(M,,)
— Hy(M,M™) — ... — H,(M,M°) =0,

where we simplify notation by settingl’ = M*, M = M andM” = (. Now every
birth corresponds to a death. In fact, we have two eventsaayevitical point, one going
up and one coming down, but duality implies that we just geheazair twice, see [9].
As a consequence of duality, the birth-death pairs we geghfonegative function; f,
are the same. This turns out to be important in the definitidh@elevation function.
For 2-manifolds, there is a more elementary way to introduceredee persistence
using the Reeb graph of the function. Instead of giving tetaie refer to [4] and we
mention that this approach leads to a fast algorithm. It isteef constructing the Reeb
graph in a sweep [10] followed by deconstructing it in anogveeep using cutting and
linking trees [4, 16]. We run this algorithm for a piecewisgelar function on a triangu-
lated2-manifold. Lettingm be the number of edges in the triangulation, as before, the



running time computing the extended persistence for a diegght function is bounded
by some constant times log, m.

Elevation. To define elevation, we assume thenanifold M is smoothly embedded
in R3. For a directionu € S?, we consider the height functidn, : M — R defined
by h,(x) = (z,u). Generically, is a Morse function, but for some directionst is
not, either because a critical point is degenerate or becaus or more critical points
map to the same height value. Considering the entire spHed&eaztions, we get a
2-parameter family of height functions.

For eachu € S?%, we pair up births with deaths using the extended sequence of
homology groups defined by the sublevel and the superletlo$é.,. In the Morse
function case, each birth-death pair identifies two critjpaints, 2 andy, one giving
birth and the other giving death, and we define the elevatitimese two points as their
persistence or, equivalently, the absolute height diffeeein the directioru, E(x) =
E(y) = |hw(z) — hy(y)]. Each point oM is critical in two directionsy and—u, and
is thus assigned two values, the absolute height differenttee paired critical pointin
the two directions. Sincé_,, = —h,,, the paired point is the same so we get a unique
value at every point. This is thedevation functiorof the 2-manifold, E' : Ml — R.

To get a feeling for this function, we consider a protrusiannjountain) of the
2-manifold. To measure the height of the mountain, we meafare the top down,
to the first saddle that separates it from an even higher naguntVe can do this in
various directions, so we do it to maximize the height. Thighthbe in a direction
along which the first saddle is ambiguous. Perhaps thereéheze such saddles at the
same height value in this direction, similar to the thirdeyip Figure 1 in which we
have a saddle with the same height difference to three minimthis direction, we
have two violations of genericity required for Morse furets, because there are three
critical points with the same height value. Indeed, locakima of £ tend to arise
along non-generic directions. An exception is thiegged maximum defined by only
two critical points (with one leg between them). Besides tdse, we have 2-legged
maxima defined by three critical points, aBdand4-legged maxima defined by four
critical points each; see Figure 1.

Curvature. We will later discover that the running time of our algoritHor finding
all local maxima relates to the total absolute curvaturdefdurface. We introduce this
concept using th&auss mapN : M — S?, defined by mapping a poiatof M to the
outer unit normal,N (), atz. AssumingM is smoothly embedded iR3, the Gauss
map is continuous and surjective but not necessarily inecindeed, the preimage of
u € S? consists of all critical points ofi,, with outer normak:, as opposed te-u.
The multiplicity of N atu and—u together is thus the number of critical points/of.
We will see shortly that the total coverage$ is exactly the total absolute Gaussian
curvature ofvIL.

Letting « be a point ofM andr > 0 a radius, we define thabsolute Gaussian
curvatureat = by taking the limit of a fraction of areag(z) = lim,_ %&;”,
whereA,. is the neighborhood of points at distance at mdsbm 2 onM. Thetotal ab-

solute Gaussian curvatuis the integral of the local quantitgy(M) = [ ., g(x)dz.



Fig. 1: The four generic types of local maxima of the elevafionction. From left to right: the
1-, 2-, 3- and4-legged maximum.
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It should be clear that:(M) is the area of the total coverage $f, taking multiplic-

ity into account. For a given direction, the multiplicity i ~!(u)|. Hence,G(M) =
Juese [N~ (u)|du. Writing c.y for the average number of critical points of the height
functions, we thus have the total absolute Gaussian cue/afyual to one half times
the area of the sphere times that avera@éyl) = 2wc,y.. This integral geometry
formula for the curvature will come handy in the analysis af algorithm. For more
information on the integral geometry formulation of cuiwa see Santalo [21].

2.2 The PL Case

Triangulated surfaces. We do all computations on a piecewise linear approximation
of the smooth2-manifold. To transport the smooth concepts to the PL cajegee
think of the PL surface as being approximated by a smoothasarfTightening the
approximation, we get a series and take the limit. This igygeral intuition we have
in the background guiding the formulation of definitionshe tPL case.

A triangulation of a 2-manifold M is a simplicial complex/, whose underlying
space is homeomorphidy| =~ M. It consists of vertices, edges, and triangles. Taput
into R3, it suffices to map each vertex to a point; the edges and tegarage the convex
hulls (of the images) of their vertices. This isgaometric realizatiorif the triangles
meet in shared edges and vertices but not in any other pdmt\ae call the result a
triangulated surfaceimplicitly assuming that it is geometrically realized R¥. The
star of a vertex is the set of simplices that contain it, andlihle consists of all faces
of simplices in the star that do not belong to the stary; = {0 € K | v; € o};
Lkv, = {7 C 0 € Stv; | 7 & Stv;}. APL functionf : |[K| — R is determined
by its values at the vertices. Assumirigv;) # f(v;) whenever # j, we define the
lower link as the subset of simplices in the link whetés smaller than at the vertex,
Lk_v; = {o € Lkv; | ® € 0 = f(z) < f(v;)}. Finally, v; is regular if its lower
link is contractible, andtritical, otherwise. Sincds triangulates &-manifold, every
link is a circle and the only contractible closed subsetspaigts and closed paths. The
lower link of a regular vertex is thus a single vertex or a pathnecting two vertices.
A minimumis characterized bf.k_v; = () and amaximunby Lk_v; = Lkw;. In the
remaining case, the lower link consistsiof 1 > 2 paths and we call; ak-fold saddle
or asimple saddléf & = 1.

In contrast to the smooth case, it is not possible to tutrfa@ld into a simple saddle
by a small perturbation. We therefore treat them directligheut reduction to simple



cases. As an example, consider the Euler-Poincaré Theshich relates the topology
of the2-manifold with the critical point structure of its functisnDefine théndexof a
simple critical point asndex (v;), index (v;) = 0 if v; is @ minimum,1 if v; is a simple
saddlep if v; is a maximum. Assuming is connected, it is characterized by dfsnus
and we have — 2 - genus = n —m + 1 = >_,(—1)"dex () wheren, m, [ are the
number of vertices, edges, triangleginand ak-fold saddle is represented tysimple
saddles in the sum.

Critical regions. Another significant complication we encounter in the PL daghat
a vertex is generally critical for an entire region of diiecis. Lettingh,, : |[K| — R

be the height function defined By, (z) = (x, u), thecritical region of a vertex is the
closure of the set of directions along whichis critical,

R; = cl{u € S? | v; is critical point ofh,, }.

We construct it from the closed polygonal curve defined bystiae ofv;. Specifically,
we map each triangle in the star to its outer normal directeopoint onS?, and we
connect the directions of two neighboring triangles by therter of the two connecting
great-circle arcs. This gives a closed polygonal curyewhich may or may not have
self-intersections. To cope with the former, more compédacase, we orient; and
define thewinding numberof a directionu € S? not on the curve as the number of
times the curve goes around the directed line defined.byiewed alongu, we count
a counterclockwise turn as1 and a clockwise turn as-1. Taking the sum we get
the winding number, which are denotedwag:, ;). For detailed study on polyhedron
Gauss map, refer to [5]. Examples are shown in Figure 2. Timeliwg number ofu
relates to the type of the vertex in the height function defibg . Specifically, ifv;

is regular then the winding number ofis 0, if v; is a simple critical point then the
winding number ig —1)dex(¥) ' and ifv; is ak-fold saddle then the winding number
is —k.

Curvature. Thinking of a vertex as a tiny region in an approximating sthaurface,
we define itsGaussian curvaturas the area of its critical region weighted by the wind-
ing number. More useful in this paper is idbsolute Gaussian curvatugefined as
the area weighted by the absolute winding numbér;) = [, _«. [w(u, 7;)|du. The
total absolute Gaussian curvatuiethen the sum over all vertice§(K) = >, g(v;).
Equivalently, it is the area of the sphere times half the ayemumber of critical ver-
tices, taking multiplicities into account, as usual. Therage is taken over all height
functions, and we count half the critical vertices becayss critical foru € S? as well
as—u € S%

3 Computation

In this section, we describe how we compute the elevationimmakor a given trian-
gulated surface ifR3. The algorithm is straightforward and the only new insighini
the analysis, relating the running time with the total abs®lGaussian curvature of the
surface.



Fig. 2: Left: for a directiornu with winding number+1 the corresponding vertex appears either as
a maximum or a minimum. Right: for winding numberl we have a simple saddle and fee
we have &-fold or monkey saddle for the height function defined by tbeesponding direction.
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Types and filters. Recall that there are four types of elevation maxima for aegen
smooth surface, as illustrated in Figure 1. We have the samectses for a generic
triangulated surfacé in R3. Each maximum is given by a set of two, three, or four
points. We consider the case in which all these points aricesrof K. The cases in
which some of the points il lies on edges oi are similar. Letl” be a set of vertices.
A necessary requirement fof to define a maximum is that its vertices are critical for
a common direction. More specifically, we need them critinad particular direction
that is determined by’. This directionuy = (y — z)/||y — ||, is slightly different for
each type.

1-legged caséy = {x,y}. Here,uy is the direction defined by the two points.

2-legged casel/ = {z,y1,y2}. Letting y be the orthogonal projection af onto the
line passing through; andy,, uy is defined ify lies betweeny; andys,.

3-legged caselV = {z,y1,y2,ys}. Lettingy be the orthogonal projection af onto
the plane passing through, y-, ys, vy is defined ify lies in the triangle they span.

4-legged casé/ = {x1,x2,y1,y2}. Lettingz andy be the feet of the shortest line seg-
ment connecting the line passing throughandzx, with the line passing through
y1 andys, uy is defined ifx lies between:; andxz, andy lies betweeny; andys.

PROJECTION FILTER.The directionuy defined by the points iV is defined and
belongs to the common intersection of critical regians, e ﬂuiev R;.

Note that the non-empty intersection of the critical regid®ma necessary but not
a sufficient condition for the sdt’ to pass the Projection Filter. In turn, passing the
Projection Filter is a necessary but not sufficient condifiar the direction:y to be an
elevation maximum. For that, the set needs to satisfy anatiraition. To describe it,
we write xg for z.

PERSISTENCE FILTERFor each pairr; andy; in V, there is an arbitrarily small
perturbatioru of uy such thate;, y; is a birth-death pair for the height functidn .



Algorithm. We compute the elevation maxima in three steps, startinig 2vjt3-, 4-
tupletsV whose points have pairwise overlapping critical regiorfse Tiext two steps
narrow down the selection using first the Projection and #rsiBtence Filter.

Step 0. Compute the critical regions of the vertices/of Letting the critical regions
be the nodes of the intersection graph,we draw an arc if the two regions have
a non-empty common intersection. Hoe= 2, 3, 4, let Q; be the set ok-cliques,
that is, thek-tuplets of nodes connected by @) arcs. LetSy = (J,, Qk-

STEP 1. Subject each pair, triplet, and quadruplebinto the Projection Filter and let
S1 C Sy be the collection that passes the filter.

STEP 2. Subject each pair, triplet, and quadruplesinto the Persistence Filter and let
Ss C S be the collection that passes the filter.

Step 1 and 2 are the same as in [4], so we focus on the impletiventd Step 0 in
which we compute the-, 3-, 4-tuplets with pairwise intersecting critical regions.

Implementation. We break down Step 0 into three smaller steps, construckiag t
critical regions, finding the intersecting pairs, and cotimuthe cliques of size, 3,

4 in the intersection graph. Implementation is done with P&rand CGAL [1]. All
computations are exact except estimating the area and tedbrg box of a critical
region.

STer0.1. Recall that each critical regioR;, is given by a closed polygon with;
edges on the sphere. Those edges may intersect, and wenak&(tin?) to con-
struct the decomposition of the sphere [13], including wigchumbers for all sub-
regions. Reflectingz; centrally through the origin ifR3, we get the region-R;
of inward normals along which; is critical. Constructing all critical regions takes
time proportional to) ., m?.

STeP0.2. Most critical regions are small and simple. This sutge® use a bounding
volume approach to find the intersecting pairs. Specificaléyfind an axis-parallel
box B; in R? that encloses the regidi; onS? C R3. We do this in two steps, first
computing the smallest enclosing spherépfind second the smallest axis-aligned
box that contains the sphere. Assuming tRafits inside a hemisphere 82, the
smallest enclosing sphere of its vertices also encl&e$o compensate for round-
off errors, we increase the sphere slightly and compute theR) to enclose the
enlarged sphere. Computing the smallest enclosing spligtetakes randomized
time O(m; ), see [24]. Given the box&B;, we find the overlapping pairs using the
segment-tree streaming algorithm as described in [25]tidgrb; for the number
of boxes that overlag;, we have a total of = % >, b; of overlapping pairs. The
streaming algorithm takes time proportionabtéog; n + b to find them. For each
pair of overlapping boxes, we check whether or not the @iitiegion they enclose
have a non-empty intersection. Standard computationahggy methods allow
us to determine whether or n&; andR; intersect in time Qm,; logm;;), where

STEP0.3. The result of Steps 0.1 and 0.2 is a grdphlts n nodes are the critical
regions, and its; arcs are the pairs of critical regions with non-empty overla



Writing ¢ = %Zi q:, Wheregq; is the degree of thé-th node, we compute the
cliques of size2, 3, 4 by checking all pairs and triplets of neighbors. Finding the
cliques that include®; thus takes time (%) + (%) + (%)).
Analysis. The time for Step 0 is dominated by the requirement for St@pwhich is
some constant time§..., = >, (%) + (%) + (%). The time for Step 1 is some constant
times|Sy| < Thew @nd that for Step 2 is some constant tiffes= |5 |n log, n. This
adds up to some constant times.., + 7', as compared t@,,q + T for the algorithm
in [4], whereT,q = (3) + (g) + (Z) Any improvement thus hinges on two properties,
namely thatlq is significantly larger thaf},.., as well asT’. We now show that the
first property holds under grossly simplifying assumpticarsd we provide evidence in

the next section that both properties hold for data we entewum practice.

CAP ASSUMPTIONThe critical regions are spherical caps, all of the same sizd
their centers are uniformly distributed 6A.

Recall that the areas of the critical regions add up to thal ethsolute Gaussian
curvaturey . Area(R;) = G(K). This sum is also half the area of the sphere times the
average number of critical points of the height functigH&K') = 27cay,. It follows the
area of a single critical region idrea(R;) = 27mcavg /1, and because the cap is smaller
than the flat disk of the same radius, its radius squared is- 2c.y./n. Two caps
overlap if and only if the center of one is contained in the oapadius2y around the
center of the other. The area of the enlarged cap is less thatifmesArea(R;). Hence
the probability for a regioR; to overlapR; is Prob[R; NR; # 0] < 4Area(R;)/4m =
2cavg/m. Since expectations are additive even if the events aremspiendent, the
expected number of-tuplets of neighbors i&xp[(%)] < (", ') Area(R;)* /7% <
2Fck  /k!. Adding the expectations fdr = 1,2, 3 and alli gives

avg

4
Exp[Thew) < n - (2cave + QCivg + gcivg).

Recall thatc,,, = G(K)/2x. It follows the average number éftuplets of critical
regions overlapping a given one depends on the shape of thetrsurface and not on
the size of the approximating triangulated surface. Siryiléhe time for Step 0 depends
on the shape and otherwise only linearly on the number ofcesrin the triangulation.

4 Experiments

Input data. We use two types of triangulated surfaces approximatingosimmodels
of biomolecular structures all listed in Table 1 Left. Theffitype is the molecular skin
which uses hyperboloid and concave sphere patches to beneen the spheres that
represent the atoms of a molecule [14]. An algorithm thastmicts an approximating
triangulated surface with guaranteed bounds on two- arebtdimensional angles is
described in [7] and software written by Ho-lun Cheng is &lde at [3]. The second
type is the molecular surfaces generated by Chimera [19.MB8MS algorithm used
in Chimera [20] constructs a triangulation of the solventleged surfaces initially
computed by Connolly [11].



Critical point statistics. For each data set, we estimate the minimum, average, and
maximum number of critical points of the height functiondjigh we sample at one
thousand directions chosen frd®i. The results are shown in Table 1 Middle. Com-
paring the estimated with the actual average, which we geyus,, = G(K)/27 =
>, Area(R;)/2m, we see that the error is small. For example, for datal ste esti-
matedc.. is 29.92 while the actual average 29.94. Since all our skin triangulations
approximate a smooth surface to about the same accuradyfferent surfaces, the av-
erage number of critical points scales linearly withindeed .. /n is betweer).003
and0.005 for all our skin data sets.

As mentioned earlier, each vertex Afis critical for a region of directions, in fact
two antipodal regions. Most of these regions are simplég,ithalefined by a polygon
without self-intersections. As shown in the last column able 1, the percentage of
non-simple polygons is indeed rather small. Besides checfar self-intersections,
we measure the complexity of a critical region by counting thiangles we need to
triangulate it on the sphere. The minimum, average, and maixi of this number are
given in the right half of Table 1.

Intersection statistics. The following statistics were collected for the finer moliegu
skin surfaces only. Recall that we compute the pairs of seteting critical regions in
two steps, first finding the intersections among the boundmgs and second among
the critical regions. Table 2 Left gives the statistics fotth

Table 1: Left: the triangulated surfaces used in our contjmrtal experiments together with their
numbers of vertices, edges, and triangles. Middle: esdthatinimum, average, and maximum
of the number of critical points of the height functions. Rigminimum, average, and maximum
of the number of triangles needed to triangulate the ctitiegions. Last column: percentage of
non-simple critical regions. Top: molecular skin surfadgsttom: molecular Chimera surfaces.

|d| name | n | m | L ||Cmin Cavg Cmax| C%,\L'g ||7'min Tavg 7'max|%
0|1BRS-5t06 1,370 4,104 2,73] 2 6.41 160.0047 2 3.99 812
1/1CLU-DBG 3,149 9,441 6,294 21350 440.0043 24.01 1215
2|1BRS-A-5t010(4,24812,738 8,492 6 17.07 340.0040] 24.01 1017
3|1BRS-A-30t04(6,11418,3312,224| 10 25.14 4§0.0041 2401 1016
4|1BRS-A-17t02%7,79923,39115,594| 12 29.92 640.0038 24.01 1020
5(1BRS-A-5t010| 836 2,504 1,668 6 16.01 320.0192] 24.08 1129
6|1BRS-A-30to4(1,374 4,11Q 2,74Q| 10 27.13 4§0.019§ 2413 1530
7|1BRS-A-17t02%1,595 4,119 3,184| 14 31.02 540.0194 2409 1033

Given a pair of intersecting boxes, we test whether or nottreesponding critical
regions intersect by checking the overlap among the tremigltheir triangulations. The
average number of triangle-triangle checks is consistdrgtweenl 1 and 12, which
justifies the use of this brute-force over a more sophisitatethod.

Similar to the number of critical points, we expect that therage number of boxes
intersecting a given box and the average number of critegibins intersecting a given
critical region scale linearly with. Indeedp,. . /n is betweerf).04 and0.07 andgay, /7



Table 2: Left: the minimum, average, and maximum number gébdntersecting a given box; the
minimum, average, and maximum number of critical regiontsrgection a given critical region.
Middle: the number of cliques before and after the Projectdter and the Persistence Filter.
Right: dominant terms in the running time of the old and the a&gorithms.

9ove 1501 /10°| [S1] || Tora/10"° | Thew /10°|T/10°

: b,
|d bmin bavg bmax| % |Qmin Qavg max

0 12 94 2070.06 9 40 9710.02 1,608 2,37 15 24 33
1 27 204 62¢0.065 11 82 25(0.02| 32,11920,52 41 50 749
2| 52 236 55¢0.05 20 92 2010.023| 43,57217,17 1,35 72 882
3| 95 243 8590.040 29 134 33(0.027| 198,02356,79 5,82 3,327 4,368
4| 99 423 1,2760.054 35 160 5430.021| 433,11694,30 15,41 7,354 9,508

is betweer).02 and0.03 for all our skin data sets. The latter is about six times the
average number of critical points; compare this with thedatwo we got under the
Cap Assumption. The observed relation between these twaotitjea is only about
three times as loose, which is reasonable consideringehatiata necessarily violates
the Cap Assumption to some extent (due to irregular shapesliffierent orientations

of the critical regions). The new algorithm starts wifh.,, tuplets. A back-of-the-
envelope calculation suggests that,, is roughlyn(q*gg), which is roughly a factor of
ten thousand smaller tha(q), independent of the value af We thus might expect the
new algorithm runs about four orders of magnitude fasten the old one.

Running time. Recall thatS; is the set of cliques of siz&, 3, or4 in the intersection
graph of the critical regions. The subsggt C S, contains all cliques that pass the Pro-
jection Filter, and the subsgt C S; contains all cliques that also pass the Persistence
Filter. The sizes of the first two sets are given in the middi€able 2.

Most relevant to the running time of the algorithms for conipgielevation maxima
is S1. Indeed, both the old and the new algorithm start with sets of-, and4-tuplets
that contain the cliques 5y, and much more. As shown in Table 2 on the right, the
overestimate by the old algorithm is about ten thousandditinat of the new algorithm.
Furthermore, in the new algorithm, the time for Step 0 and$te and 2 is fairly
balanced. Thisimplies a speed-up of about four orders ofitiade, which is consistent
with back-of-the-envelope calculation mentioned above.

Conclusions. The main result of this paper is a new algorithm for computfigele-
vation maxima of a triangulated surfaceRdi. We provide experimental evidence that
for practical data, the new algorithm runs about four oraémmagnitude faster than the
old one. The improvement is achieved by making the runnimg tdependent on the
total absolute Gaussian curvature of the surface and tesarlegtent on the number of
vertices in the approximating triangulation.
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