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Figure 1: Comparison of synchronous exchange and asynchronous iexchange Gantt charts of particle tracing in a synthetic
flow field. The left (synchronous) chart clearly shows 4 rounds in horizontal bands because each round can begin only
after the slowest block in the previous round is completed. Our asynchronous method (right chart) is several times faster
because communication and computation are interleaved, and blocks execute as soon as they are able. This synthetic
dataset is designed such that the overall time for asynchronous iexchange is only slightly longer than the time for slowest

block.

ABSTRACT

Iterative parallel algorithms can be implemented by synchro-
nizing after each round. This bulk-synchronous parallel (BSP)
pattern is inefficient when strict synchronization is not required:
global synchronization is costly at scale and prohibits amor-
tizing load imbalance over the entire execution, and termi-
nation detection is challenging with irregular data-dependent
communication. We present an asynchronous communication
protocol that efficiently interleaves communication with com-
putation. The protocol includes global termination detection
without obstructing computation and communication between
nodes. The user’s computational primitive only needs to in-
dicate when local work is done; our algorithm detects when
all processors reach this state. We do not assume that global
work decreases monotonically, allowing processors to create
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new work. We illustrate the utility of our solution through ex-
periments, including two large data analysis and visualization
codes: parallel particle advection and distributed union-find.
Our asynchronous algorithm is several times faster with better
strong scaling efficiency than the synchronous approach.

Index Terms: Computing methodologies—Parallel comput-
ing methodologies—Parallel algorithms—Massively parallel
algorithms

1 INTRODUCTION

Iterative parallel algorithms consist of alternating rounds of
computation and communication. Traditionally, HPC scien-
tific codes implemented this pattern by synchronizing at the
end of each round, often because a blocking collective opera-
tion was needed to gather results and determine whether the
algorithm converged and could terminate. This pattern of bulk-
synchronous parallel (BSP) programming has been in use since
1990 [27] and is still popular today. Relatively straightforward
to program, the BSP model can be inefficient for algorithms
that otherwise do not require strict synchronization to produce
a correct result. Global synchronization, in addition to being
a costly operation at scale, prohibits amortizing load imbal-
ance over the cost of the entire execution, instead forcing all
processes in all rounds to wait for the slowest computation to
finish.



BSP can be especially inefficient in distributed data analytics.
All but the most trivial analyses require considerable non-local
communication that is often irregular and highly unbalanced.
Unlike simulation codes, analytics codes often lack the compu-
tational intensity to mask communication overheads. Iterative
irregular data-dependent communication is common in mod-
ern data analytics: scientific visualization, machine learning,
computational topology and geometry, graph analytics, uncer-
tainty analysis are abundant in algorithms that require flexible
communication patterns.

To build these at scale, algorithm designers and software de-
velopers need high-level asynchronous communication patterns
that interleave frequent communication with computation. We
are interested in the following high-level algorithm, running on
every process:

1 while not globally done do
dequeue incoming messages
perform local work

enqueue outgoing messages

2
3
4
5 exchange messages asynchronously

There are many ways to approach this problem. We are
specifically interested in the general setting, where one cannot
assume that the total amount of work in the system is known,
nor that it monotonically decreases. Performing local work
can spawn new work (what we refer to as nonmonotonicity
throughout the paper), making the total number of iterations
of the while-loop unknown. Each process only knows whether
it currently has any local work to complete. The key problem
is to decide when the algorithm is globally done, i.e., when all
processes are done locally and no messages remain in flight.
To be efficient and let each process proceed at its own pace, we
explicitly aim to avoid synchronizing in the global termination
detection.

This paper presents a solution to this problem, called
iexchange: an asynchronous iterative message exchange proto-
col and an asynchronous termination detection algorithm, both
built on top of MPI. The communication pattern is responsi-
ble for detecting when all processes are out of work and there
are no point-to-point messages in flight. A key advantage of
our approach is that porting an existing code from BSP to an
asynchronous implementation is straightforward. The main
abstraction remains an iterative compute-communicate pattern
like BSP, familiar to parallel programmers.

After reviewing related work in Section 2, we present the
design of the protocol in Section 3. It features a simple im-
plementation of asynchronous termination detection that can
be cancelled or updated by a local process at any time. Using
MPI-3 nonblocking collectives enables an elegant solution to
(cancellable) termination detection. Section 4 demonstrates
and evaluates performance of iexchange in two applications:
parallel particle tracing and distributed union-find. In both ap-
plications, synthetic and real datasets are used to evaluate per-
formance and compare iexchange with traditional synchronous
exchange (i.e., BSP). At scale, iexchange demonstrates clear
performance advantages.

2 RELATED WORK

2.1 Bulk-synchronous parallel programming

Traditional data-parallel codes are written in MPI [9], de-
signed over twenty years ago for executing process-parallel
bulk-synchronous distributed computing and communication.
For productive programming of data analytics, higher level
programming models built on top of MPI can promote modu-
larity and reuse of frequently recurring design patterns while
attaining the proven performance of MPL.

Our work builds on DIY [17], which acts both as a pro-
gramming model and a runtime for block-parallel analytics on
distributed-memory machines. DIY uses MPI as the underlying
communication mechanism, hiding low-level details of MPI
from the programmer. DIY’s main abstraction is block paral-
lelism: data are decomposed into blocks; blocks are assigned
to processing elements (processes or threads); computation is
described as iterations over these blocks, and communication
between blocks is defined by reusable patterns. Blocks and
their message queues are mapped onto processes and placed
in memory or storage by the DIY runtime, enabling the same
program to execute in-core, out-of-core, serial, parallel, single-
threaded, multithreaded, or combinations thereof. Building
on the block abstraction, communication patterns and other
algorithms can be developed once and reused.

Prior to the work described in this article, DIY expected the
computation to be organized in a BSP pattern, called exchange,
where computation iterates over the blocks, followed by a com-
munication phase. This article describes the implementation of
an asynchronous communication pattern called iexchange, the
nonmonotonic termination detection that is part of the imple-
mentation, and experimental results comparing the performance
and s?alability of the BSP and asynchrononous protocols in
DIY.

2.2 lterative algorithms

Unfortunately, the BSP pattern, while allowing block schedul-
ing, placement, and execution by the runtime, can be limiting
for programmers faced with the kinds of data-dependent com-
munication patterns found in modern data analytics algorithms.

Higher-level programming models than MPI that offer it-
erative data-dependent processing are Charm++, Legion, and
Regent. Charm++ [14] has a dynamic mapping between data
objects and processes (called chares) and between chares and
physical processes. In Legion [2], blocks are called logical
regions, and the runtime maps logical regions to physical re-
sources. Regent [25] is a new language and compiler for the
Legion runtime, which results in shorter, more readable code
than the original Legion language.

Ovcharenko et al. [21] proposed a library for data-driven
communication among neighboring processes, where the neigh-
borhood is allowed to change dynamically: processes can enter
and leave a communication neighborhood at will. Their im-
plementation differs from ours in two ways. First, their pro-
gramming model is process-parallel—computation and com-
munication is programmed in terms of MPI processes rather
than blocks. Second, they use a blocking allreduce operation to
synchronize computation each time consensus on group mem-
bership in the neighborhood needs to be determined; we rely
on non-blocking consensus.

I'The work described in this article is available in the latest version
of the open-source DIY software. https://github.com/diatomic/diy



2.3 Consensus protocols
2.3.1 Client-server distributed protocols

In general, monotonicity makes consistency in distributed sys-
tems easier. The CALM (Consistency as Logical Monotonicity)
Theorem states that monotonic programs have consistent and
coordination-free distributed implementations [11]. Our prob-
lem is not monotonic, however. We assume that whether a
process is done can change locally at any time, while globally,
the total amount of work in the system is not fixed. Hence,
the CALM Theorem does not apply. Moreover, we assume
these changes can happen at a high frequency, meaning that
the cost of achieving consistency through distributed consensus
can impede performance and scalability.

Distributed consensus protocols such as Paxos [15] and
Raft [20] rely on quorum voting protocols for determining
ordering or group membership and are not designed for high-
frequency changes. Distributed database transaction proto-
cols generate serializable ACID (Atomic, Consistent, Isolated,
Durable) transactions in order to guarantee correctness, at the
cost of coordination using blocking communication. To min-
imize the costs of coordination, some systems relax consis-
tency by minimizing coordination [1, 28] or eliminating it alto-
gether [32].

Neither the quorum nor the transaction consensus protocols
are appropriate for our case. First, MPI has strict and static
membership, so that we always know that all group members
(i.e., processes) are alive. Second, the state of our consensus
(in our case the global work left in the system) can change
rapidly. It is more appropriate to build a protocol over the
strong guarantees and the low latency provided by MPI.

2.3.2 Termination Detection in MPI Applications

Blocking collectives such as allreduce? are not appropriate be-
cause our objective is to avoid synchronization in the rounds
of an iterative algorithm. Likewise, a single instance of a
nonblocking collective such as iallreduce does not support non-
monotonicity because according to the MPI standard [5], non-
blocking collectives are not allowed to be cancelled.

MPI distributed consensus protocols for sparse data ex-
change such as nonblocking consensus [12] assume that the
local work decreases monotonically. Once a process enters
the nonblocking barrier, it cannot leave and do any additional
work.

A simple implementation of a nonmonotonic consensus is a
single global work counter accessed through a one-sided MPI
window. Implemented using atomic increment and decrement
operations, the counter can increase and decrease as needed and
can be accessed by all processes. Our early experiments (not
shown here) using this method confirmed that the problem with
this approach is scalability. Contention for access to the counter
increases with number of processes. Furthermore, hosting the
shared counter occupies so many CPU cycles that the same
process cannot effectively perform the same work as the other
processes.

A scalable tree version of a global counter was developed
by Sinha et al. [24] that counts local work, which is allowed to
increase or decrease, and accumulates the global counts up a

2Here and in pseudocode, we typeset MPI commands in sans-serif,
but skip the prefix, to avoid clutter. In other words, we write allreduce
instead of MPI_Allreduce.

tree. Charm++ uses this algorithm for termination detection,
but requires producers to indicate when they are done adding
work to the system, making the total work after this point
decrease monotonically.

Active Pebbles [31] is another framework that incorporates
several termination detection algorithms, all more restrictive
than our algorithm. The key distinction of our termination
protocol is what Willcock et al. [31] call depth limitation. They
assume limits on the amount of new work or nonmonotonicity,
which makes termination detection easier, allowing for reduce-
scatter patterns to be used, such as the PCX protocol [12]. Our
approach, in contrast, is unlimited-depth by design. This means
that iexchange will iterate until it converges.

Dathathri et al. [3] describe a bulk-asynchronous parallel
system, Gluon-Async, for distributed graph analytics that takes
advantage of the graph algorithms’ robustness to stale reads.
Their termination detection relies on broadcasts of consecu-
tive snapshots of the state of the system across all data blocks.
While sharing some similarities with Gluon-Async, our solu-
tion is not tailored to a particular set of algorithms such as
graph analytics. Besides supporting a wider class of algorithms,
our termination detection uses two non-blocking collectives
to transition through the underlying state machine vs. three
snapshots used by Dathathri et al.

We present here a simple and effective implementation of a
nonmonotonic consensus protocol out of nonblocking ibarrier
and nonblocking iallreduce calls. The result is a cancellable
protocol that allows the amount of work to change indepen-
dently on each rank, terminating only when all blocks have
simultaneously exhausted all their local work.

3 IEXCHANGE ALGORITHM AND TERMINATION DETEC-
TION

The main goal of our algorithm is to seamlessly interleave
computation and communication, while presenting a simple
interface to the user. We accomplish this by requiring the user
to provide a callback that the algorithm may call arbitrarily
often. The callback is supposed to dequeue any incoming data,
perform local computation, and enqueue any outgoing data.
Algorithm 1 provides a pseudo-code sketch of a callback. We
emphasize that this sketch is simplified for clarity: dequeuing,
local computation, and enqueuing can be performed in arbitrary
order. The salient point of the pseudo-code is that the user
works with intermediate data queues for communication; the
actual exchange of the data between MPI ranks is taken care
of by our algorithm. The return value of the callback signals
whether any local work still remains (set to false, for example,
if the work cannot be completed because extra information is
required).

Algorithm 1: Callback structure

1 foreach incoming queue q do

2 dequeue data from ¢

3 perform local computation

4 foreach data to send do

5 enqueue outgoing data to its recipients
6 return whether any local work remains

Algorithm 2 outlines the iexchange algorithm itself. While



global termination condition is not reached, the algorithm cy-
cles over its local blocks. It sends and receives the message
queues, which store arbitrary data at the granularity chosen by
the user — from individual particles to large subsets of grids —
and executes the user-supplied callback. Crucially, it maintains
the count of local work. Initially, this is set to be the number
of local blocks. When a block indicates that it has finished all
of its local computation, the work counter is decremented. The
global termination is reached when work counters on all MPI
ranks drop to 0.

Algorithm 2: iexchange(f)

1 finished = false

2 state =0

3 work = number of local blocks

4 set b.done = false for all blocks b
5 while not finished do

6 foreach block b do

7 send outgoing message queues (Algorithm 3)

8 check incoming message queues (Algorithm 4)

9 done = block callback function f(b)

10 work += number of outgoing queues filled by the
callback

1 if done and not b.done then

12 decrement local

13 b.done = done

14 finished = all_done(work, state) (Algorithm 5)

The local work counter keeps track of more than just the
number of incomplete blocks. It is incremented for every out-
going queue and decremented once the queue is received by
its target. To make sure this happens synchronously and work
is never lost in the system, we use MPI’s nonblocking syn-
chronous issend operation. When the request returned by this
operation is complete, MPI guarantees that the message has
been received by its target. This allows us to increment the
work counter on the receiver before it is decremented by the
sender, and therefore total work in the system does not drop to
0. Algorithms 3 and 4 spell out the details of this exchange.

Algorithm 3: Send outgoing

1 foreach outgoing queue q to rank r do
2 request = issend(r, q)

3 append request to requests

4 foreach request € requests do

5 if test(request) then

6 decrement work

7 delete request

The key problem for termination detection is how to decide
when everyone is done with an irregular distributed compu-
tation whose global amount of work cannot be assumed to
monotonically decrease. We developed a scalable implementa-
tion of a nonmonotonic consensus protocol out of a pair of MPI
nonblocking collective calls, namely by interleaving ibarrier
and iallreduce operations. Together they make up a cancellable
protocol that allows work to be globally agreed upon, while
local work may grow and shrink. The protocol terminates only

Algorithm 4: Check incoming

1 while » = iprobe do
2 increment work /I “inflight” count
3 g=recv(r)

4 b =determine which block the queue is for
5 if b.done then

6 increment work

7 b.done = False

8

decrement work // undo “inflight” count

when all ranks have simultaneously exhausted all their local
work.

The crux of the problem is reaching consensus about global
termination: when all local work is finished and no messages
remain in-flight. Our algorithm accomplishes this by a call to
all_done, listed in Algorithm 5. Figure 2 lists the underlying
state diagram. Initially, every rank starts in State O and remains
there while its local work is non-zero. When the local work
is exhausted, it transitions to State 1, activates a non-blocking
ibarrier, which will detect when all ranks have entered State 1,
and initializes a dirty flag, which indicates whether this rank
has seen any work since entering the new state. Although not
explicitly listed in Algorithms 2, 3, 4, they set the dirty flag
to true any time they increment local work from 0. In State
1, once the non-blocking ibarrier succeeds, the ranks transition
to State 2 by initiating a non-blocking global reduction of the
dirty flags, using a logical or: if any rank has seen any work
since activating its ibarrier, the termination detection needs to
reset. This check is the only function of State 2. If the iallreduce
returns true, we can successfully terminate: all ranks entered
the ibarrier and haven’t seen any work since. If it returns false,
we reset to State 0.

if work =0

State 0

working

State 1

locally done,
waiting for all

ibarrier
dirty = false

if ibarrier done
iallreduce(dirty)
dirty

State 2

all done,
checking for
cancellation

clean
Stop

Figure 2: State diagram for all_done, Algorithm 5.

Because we use a synchronous issend to exchange the data
between ranks in Algorithm 3, we can guarantee that termi-
nation is not reached prematurely. If the receiver is in State
1, while the sender is still in State O, then before the sender
transitions into State 1 (after decrementing its local work), the
receiver will detect the new message via an iprobe in Algo-
rithm 4, increment its local work and therefore set its dirty flag
to true before the ibarrier succeeds and iallreduce is activated.



Algorithm 5: all_done(work, state)

1 if state = 0 and work = 0 then
2 ibarrier_request = ibarrier

3 dirty =false

4 state=1

5 return false

6 if state = 1 then

7 if test(ibarrier_request) = true then

8 iall _reduce_request = iallreduce(all_dirty < dirty,

or)
9 state =2
10 return false

11 if state = 2 then
12 if test(iall_reduce_request) = true then

13 if all_dirty then // done
14 return true

15 else // reset
16 state =0

17 return false

4 APPLICATIONS OF IEXCHANGE AND COMPARISON
WITH EXCHANGE

We evaluate the iexchange protocol on two classical algorithms
in large-scale parallel visualization and analysis: parallel parti-
cle advection and distributed union-find. Both applications are
iterative, and their computation and communication loads are
highly irregular and data-dependent.

4.1 Particle Advection

Particle advection is a fundamental procedure in the visualiza-
tion and analysis of vector flow fields such as those in computa-
tional fluid dynamics (CFD) simulations. Massless particles are
seeded in initial positions in a vector field and are then advected
over a number of integration steps. The trajectories that the par-
ticles follow can be visualized or used for other analysis, such
as segmenting the field based on its divergent and convergent
behavior [8]. Parallel particle tracing in distributed memory has
traditionally been difficult to scale because the communication
volume is high, the computational load is unbalanced, and the
I/O costs are prohibitive.

Parallel methods typically follow one of three models. Task-
parallel algorithms decompose the problem along different seed
particles and their trajectories. Each process is responsible for
some number of seeds over their lifetime [18]. Data-parallel
methods decompose the problem over the vector field, where
each process is responsible for the particles as they come and
go through the subdomain of the field [22]. Hybrid algorithms
combine the two approaches, parallelizing over particles but
transferring particles when workload becomes unbalanced [23].

We implemented the data-parallel method of Algorithm 6
using DIY’s blocks as the units of domain decomposition, each
block containing a spatial subdomain of the input vector flow
field. We wrote two variants of the algorithm; one using syn-
chronous nearest-neighbor exchange and synchronous termi-
nation detection using a global collective in each round, and
the other using the asynchronous iexchange communication
protocol of Algorithm 2 and asynchronous termination detec-
tion of Algorithm 5. The synchronous exchange version is

also the algorithm in [22], meaning that the following experi-
ments both benchmark the difference between the exchange and
iexchange protocols, and at the same time, they compare our
asynchronous implementation with a state-of-the-art particle
tracing algorithm.

Algorithm 6: Parallel particle tracing

1 while not globally done do
local particles <— dequeue incoming particles
foreach local particle p do
while p € local block bounds do
advect p with Runge-Kutta scheme
if p € global domain bounds then
enqueue p to neighboring block
else
retire p

RIS B Y N

We used the Theta supercomputer at the Argonne Leadership
Computing Facility for the following tests.>

4.1.1 Synthetic Data

We designed a synthetic flow field, shown in Figure 3 to com-
pare the performance of the synchronous exchange protocol
with iexchange. The dataset is intentionally constructed with
load imbalance that drifts through the field as the particle advec-
tion progresses. We hypothesize that this type of dataset should
favor the iexchange protocol, which can amortize the cost of
heavily-loaded blocks with the lightly-loaded ones, whereas
the strict synchronization of the exchange protocol forces each
advection round to take as long as the slowest block. Velocity
is in the +x direction. All blocks have velocity fast_vel, except
the blocks on the 3-d diagonal, which have velocity slow_vel.
Both parameters are adjustable, allowing us to change the ra-
tio between fast and slow velocities. We used fast_vel = 10
and slow_vel = 1 in the following tests. A 512-voxel grid is
seeded with 4 particles per voxel in the y and z dimensions at
the far left plane of the domain.

—> Fast velocity
>/ >

~—> /1 N

—x
7 7
d
s /]
B
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[
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Bt . /

/

ARARAD

—

Figure 3: Synthetic flow test generates load imbalance by modi-
fying the velocity magnitude in the blocks that are positioned on
the 3-d diagonal of the lattice of all the blocks.

3Theta is a Cray XC40 machine with 4,392 nodes. Each node
has one Intel Xeon Phi Knights Landing 64-core CPU, 16 GB high-
bandwidth MCDRAM, 192 GB DDR4 RAM, and 128 GB of SSD
storage.
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Figure 4: Time to compute particle advection using exchange at
2 blocks per process and iexchange at 16 blocks per process
over a synthetic vector field of 5123 vectors that are unbalanced
by a factor of 10:1. Particles are seeded at a rate of one per
every 0.25 grid points in y and z dimensions in leftmost plane of
the domain.

Determining number of blocks per MPI process Ta-
ble 1 shows the result of an experiment to determine how many
blocks to create for each MPI process. For each number of
processes the best (lowest) time for exchange and for iexchange
is highlighted in bold font. We see that the performance is
sensitive to the number of blocks, and the two protocols have
different optimal number of blocks per process. Exchange tends
to favor smaller numbers of blocks. The optimum is either 2
or 4 blocks per process; we selected 2 blocks per process as
the best setting. Iexchange, on the other hand, favors larger
numbers of blocks per process. The optimal number of blocks
increases with scale, with 16 blocks per process being best at
2,048 processes, and nearly best at 8192 processes. We selected
16 blocks per process as the setting for iexchange.

Strong scaling experiment Figure 4 shows the timing
for a strong scaling experiment using the synthetic dataset
described above. The ratio of fast_vel to slow_vel is 10:1.
Particles are seeded at a rate 0.25 (4 particles per voxel). The
reported time, shown in log-log scale, is the average over three
trials. Based on the result of the previous experiment, we
used two blocks per MPI process for the synchronous exchange
protocol and 16 blocks per process for asynchronous iexchange
Comparing the time for exchange with iexchange, we see that
iexchange is up to 3 times faster and has 2 times higher strong
scaling efficiency (the slope of the curve) than exchange.

To help understand the results, Figure 1 visualizes time
traces collected on a Linux workstation with dual-socket In-
tel Xeon Gold 6230, with total of 40 physical cores and 80
hyper-threads. 64 MPI ranks were used; the domain was de-
composed as a 43 grid of blocks, meaning there were 4 blocks
with slow_vel. In this test, fast_vel = 10 and slow_vel = 0.1.
Computation (particle advection) is in blue; communication
(particle exchange and termination detection), in red. The four
slow blocks correspond to the long blue lines. In exchange, the
four rounds of advection are clearly visible, with synchroniza-
tion at each round: each slow block is processed in a separate

round, which is responsible for the long cumulative time. In
contrast, iexchange has interleaved computation and commu-
nication. The particles reach each slow block faster, without
having to synchronize across blocks. As a result, the cumula-
tive time is only a little slower than the time to process a single
slow block.

4.1.2 Computational Fluid Dynamics Data

The Nek5000 dataset shown in Figure 5 is a 3-d vector field
representing the numerical results of a large-eddy simulation of
Navier-Stokes equations modeled by the Nek5000 simulation
code [4] for the MAX experiment [16]. The dataset represents
the turbulent mixing and thermal striping that occurs in the
upper plenum of liquid sodium fast reactors. The data have
been resampled from their original topology onto a 5123 regular
grid.

Figure 5: Streamlines traced in Nek5000 dataset indicate a high
degree of turbulence in the flow field.

We conducted a similar experiment as shown in Table 1 to
find the best number of blocks per MPI process for exchange
and iexchange for the Nek5000 dataset as for the synthetic
data. The data, not shown here to save space, resulted in the
same conclusion: two blocks per MPI process for exchange
and 16 blocks per process for iexchange produced the best
performance. We continued to use these settings in the tests
below.

Figure 6 shows the timing for a strong scaling test advecting
particles through the Nek5000 dataset. The time, shown in log-
log scale, initially shorter for exchange, is shorter for iexchange
beyond 512 processes. There are two reasons for this improve-
ment. Typically, load imbalance worsens as the number of
blocks and MPI processes increases because blocks become
smaller, isolating local fluid flow effects such as vortices. As
the previous experiment showed, iexchange can amortize some
of those effects. Also, the higher number of blocks affords
more opportunities for iexchange to find work to do because
it does not have to wait and synchronize on each round. This
is true during message transmission as well as termination de-
tection, both being synchronous in exchange and asynchronous
in iexchange. Similar to the synthetic benchmark, at scale



Protocol Blocks Time (s) for | Time (s) for | Time (s) for | Time (s) for | Time(s) for
per Pro- | 32 Processes | 128 Processes | 512 Processes | 2048 Pro- | 8192 Pro-
cess cesses cesses

Exchange 1 93.027 79.390 19.931 17.330 15.846
2 95.807 73.461 65.394 16.740 15.567
4 285.032 74.465 62.390 59.530 15.239
8 281.349 244787 63.319 58.225 56.280
16 290.736 243.664 228.618 58.785 55.583

Iexchange | 1 96.403 81.911 20.377 17.074 15.583
2 64.308 45.683 36.211 9.145 7.986
4 107.284 27.348 20.046 17.066 4.277
8 73.196 47.373 12.249 9.561 8.123
16 57.816 31.981 22.537 5.839 4.601

Table 1: Performance with Varying Number of Blocks per MPI Process
a2 105.75 et al. [13] combine local computation and global synchronous

68.
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Exch: —0—
xchange 54|

Iexchange —m—
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Figure 6: Time to compute particle advection of over Nek5000
dataset of 5123 vectors. Particles are seeded at a rate of one
per every 4 grid points in each dimension. Two blocks per MPI
process were used for exchange and 16 blocks per process for
iexchange.

iexchange is up to 3 times faster than exchange, with 5 times
higher strong scaling efficiency.

4.2 Distributed Union-Find

Union-find is a classical algorithm for connected component
labeling of undirected graphs using a disjoint set data struc-
ture [7,26]. Algorithm 7 outlines the serial union-find algo-
rithm.

Algorithm 7: Serial union-find

1 foreach vertex v € V do

2 make singleton set(v)

3 foreach edge (u,v) € E do

4 if find_set(u) # find_set(v) then
5 union(u, v)

Several distributed parallel algorithms for union-find of dis-
joint sets have appeared in various contexts. Harrison et al. [10]
identify disjoint sets locally and then merge local sets into
global ones using synchronous global communication. Iverson

communication round-by-round to find unions of disjoint sets.
Friederici et al. [6] implemented distributed union-find, in order
to analyze percolation of turbulent fluid flows, by sending all
local updates to a single global process. Nigmetov and Moro-
zov [19] find unions of distributed disjoint sets in the course
of computing connected components in parallel merge trees.
They compute the unions over multiple rounds until conver-
gence, using DIY’s synchronous exchange for nearest-neighbor
communication and reduce for global reduction.

Xu et al. [33] compute connected components with a dis-
tributed union-find algorithm for the purpose of tracking fea-
tures such as trajectories of critical points over time-varying
data. Like Nigmetov and Morozov, they compute unions lo-
cally, exchanging only information with nearest neighbors, but
they use DIY’s new iexchange protocol for asynchronous ex-
change and termination detection.

For the purpose of the following experiments, we ran the
asynchronous algorithm of Xu et al., along with a second ver-
sion using synchronous nearest-neighbor exchange and syn-
chronous collective reduce to detect termination, with the other
local operations being identical. The time reported is only for
the distributed union-find, i.e., connected component labeling,
which is one step of a larger feature tracking pipeline in the pa-
per of Xu et al. As in the previous particle tracing experiments,
the objective of these tests is to compare the performance of
the synchronous and asynchronous protocols. The synchronous
and asynchronous algorithms in [33] are representative of the
state of the art, scaling to 8,192 ranks. This means that the
following experiments both benchmark the difference between
the exchange and iexchange protocols, and they demonstrate
the state of the art in distributed union-find algorithms.

Each MPI process executes Algorithm 8.4 The operation
set(u) returns the label of the set containing vertex u, and the
operation process(u) is the rank of the neighboring MPI process
owning the subdomain containing vertex u.

We used the same Theta supercomputer as for particle ad-
vection. For the following tests, we used only one block per
MPI process because the code of Xu et al. was not written for
multiple blocks per process.

4 Algorithm 8 is a high-level outline of the algorithm of Xu et al.,
with more details in [33].



Algorithm 8: Distributed parallel union-find

1 while not globally done do

2 dequeue incoming vertices and labels of sets
3 perform local serial union-find (Algorithm 7)
4 foreach edge (u,v) do

5 if process(u) # process(v) then

6 if set(u) changed then

7 enqueue [u, set(u)] to process(v)

8 if set(v) changed then

9 enqueue [v, set(v)] to process(u)

4.2.1 Synthetic Data

We used the synthetic benchmark dataset developed by Xu
et al. [33] for these experiments. The dataset consists of a
regular grid mesh of two spatial dimensions and 1 temporal
dimension (3-d in total) and has a variable number of critical
points whose trajectories move in the space dimensions as a
function of time to generate spiral-like trajectories in space-
time. The trajectories of the critical points in space-time are
the connected components (i.e., disjoint sets) that are being
identified with Algorithm 8.

For the following experiment, we selected 128 x 128 spatial
resolution x 128 time steps, and we tracked three types of
critical points (minima, maxima, and saddles). The resulting
total number of components is 280. These components on
average have 337 number of elements, ranging from 4 to 574.

Figure 7 shows the result of a strong scaling experiment
comparing exchange with iexchange, plotted in log-log scale.
The synchronization in exchange stops scaling beyond 128 MPI
processes, whereas iexchange continues to scale to 2,048 pro-
cesses. The connected component statistics above highlight the
severe load imbalance between the smallest and largest compo-
nent. Moreover, the load changes dynamically as the union-find
algorithm progresses through its iterations, and components
grow in size. The global amount of work in the system also
fluctuates dynamically, and exchange must do many rounds of
blocking global collectives to detect termination.

4.2.2 Experimental Data

Using an exploding-wire experiment, scientists can generate
high-temperature microparticles of different types, including
electrons, ions, atoms, and molten dust [29,30]. High-speed
cameras capture the movement of these particles and produce
high-resolution images. Tracking these particles (Figure 8) in
the images helps researchers understand properties of micropar-
ticles and high-temperature plasmas, study their interactions,
and develop advanced techniques for plasma fueling. More-
over, the imaging data can aid scientists to enhance theoretical
models for simulations.

The following experiment measures the performance of the
distributed union-find algorithm while tracking particles over
4,745 time steps of exploding wire images, each 384 x 384 pix-
els. The total number of components is 52,978. The minimum
number of elements per component is 1; the maximum number
of elements per component is 11,086, and the average number
of elements per component is 60.

Figure 9 shows the strong scaling results plotted in log-log
scale. We see similar trends as in the synthetic data. The
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Figure 7: Time to compute distributed union-find of connected
components of critical points in a synthetic field of 1282 scalars
over 128 time steps. The number of blocks per MPI process is 1.

Figure 8: Microparticle tracking in exploding-wire experiments is
one application of the distributed union-find algorithm.

exchange protocol stops scaling at 128 MPI processes, while
iexchange continues to scale to 8,192 processes. At scale,
iexchange is over 130 times faster than exchange, for the same
reasons as the synthetic data: severe, dynamically changing
workload over a large number of iterations.

5 CONCLUSION

Bulk-synchronous parallel programming can be inefficient for
iterative algorithms that do not require strict synchronization to
produce a correct result. As an alternative to BSP, we presented
an asynchronous communication protocol, for exchanging MPI
messages in iterative algorithms, that efficiently interleaves
communication with computation. The protocol includes an
algorithm that detects global termination without obstructing
computation and communication between individual nodes.
The computational primitive supplied by the user only needs
to indicate when it is done with the local work; our algorithm
detects when all processors reach this state. Crucially, we do
not assume that global work decreases monotonically, and we
allow for processors to create new work, including for other
processors.

We demonstrated the practical utility and efficiency of our
solution in several synthetic and real-world examples. Our
experiments featured two data analysis codes: parallel particle
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Figure 9: Time to compute distributed union-find of connected
components of critical points in high-speed images of 3847 pixels
over 4,745 time steps. The number of blocks per MPI process is
1.

advection in fluid flow analysis, and distributed union-find in
connected component labeling. The performance tests in the
previous section showed that our asynchronous algorithm is
several times faster and has better strong scaling efficiency than
the conventional synchronous approach. The results demon-
strated that iexchange can effectively hide load imbalance that
occurs in algorithms where the computational and communi-
cation workloads are data-dependent. This is particularly the
case at scale, when load imbalance becomes more acute, and
the ratio of communication to computation increases.
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