Noname manuscript No.
(will be inserted by the editor)

Interleaving Distance between Merge Trees

Dmitriy Morozov - Kenes Beketayev -
Gunther H. Weber

the date of receipt and acceptance should be inserted later

Abstract Merge trees are topological descriptors of scalar functions. They
record how the subsets of the domain where the function value does not exceed
a given threshold are connected. We define a distance between merge trees,
called an interleaving distance, and prove the stability of these trees, with
respect to this distance, to perturbations of the functions that define them.
We show that the interleaving distance is never smaller than the bottleneck
distance between persistence diagrams.

1 Introduction

Topological data analysis is a young field at the intersection of computational
geometry and algebraic topology. It interprets data as functions on topological
spaces, detects their salient features, and summarizes their connectivity. The
resulting topological descriptors serve many purposes. Some of them allow the
user to segment the data into interesting regions. For example, Morse—Smale
complexes partition the domain of a scalar function into regions with uniform
gradient flow. Others help with rapid exploration of the data set; Reeb graphs
let the user quickly label and extract connected components of level sets of
a function. Yet others, such as persistence diagrams, present the user with a
complete overview of the data, helping her make decisions about the magnitude
of noise and recognize significant scales in the data. In all cases, it is crucial
for the descriptor to be stable. Stability is the most basic test of robustness:
if we perturb the data a little, can the descriptor change a lot? To be reliable,
it must not.

In this paper, we are concerned with a specific topological descriptor. One
of the basic structures in computational topology, a merge tree keeps track

Dmitriy Morozov! - Kenes Beketayev!:2 . Gunther H. Weber!:2

!Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
2University of California, Davis, 1 Shields Avenue, Davis, CA 95616

E-mail: dmitriy@mrzv.org, KBeketayev@Qlbl.gov, GHWeber@Qlbl.gov

2 Dmitriy Morozov et al.

of the evolution of connected components in the sublevel sets of a function.
It records how new components appear at minima and merge at saddles. To
even approach the question of stability in the previous paragraph, we must
first define a distance between two trees. We call our definition the interleaving
distance.

Its introduction has a dual effect. First of all, it lets us prove stability of
merge trees with respect to this distance — our main goal. But as impor-
tant is the resulting transformation of the space of merge trees into a metric
space. This construction makes it possible to use merge trees as proxies for
function comparison. Often such direct comparison is either too difficult, or
too sensitive. For example, directly comparing height functions on two shapes
would first require computing a homeomorphism between the shapes that best
aligns the two functions, a notoriously difficult proposition. On the other hand,
extracting two merge trees is simple and fast.

Despite how significant stability is to topological data analysis, its study
has been limited — no proofs exist for most descriptors. The work most closely
related to ours is the proof of stability of persistence diagrams [4,1]. In this
context, besides purely mathematical developments [3], stability lets us track
changes in persistence diagrams of continuously varying functions [5] as well as
encourages the use of persistence diagrams as stable signatures of shapes [2],
in the spirit of the previous paragraph.

Outline. We define the interleaving distance in Section 3 and check that it is a
metric. Theorem 2 in Section 4 ensures that this distance is stable. Theorem 3
in the following section relates interleaving distance to the bottleneck distance
between persistence diagrams. It is a quality check: merge trees capture more
information than 0-dimensional persistence diagrams, therefore, a distance on
merge trees should be more discriminating than the distance on persistence
diagrams.

2 Background

We start with a scalar function f : X — R, defined on a connected domain
X. We say that two points x and y in its domain are equivalent, z ~ y, if
they belong to the same component of the levelset f~1(f(z)) = f~(f(y)).
The quotient space with respect to this equivalence relation, X/~ is called a
Reeb graph of f. Informally, it is a continuous contraction of the contours of
function f.

Merge trees. An epigraph of the function, denoted by epi f, is the set of points
above its graph: epi f = {(z,y) € XxR |y > f(z)}. We denote the projection
from the epigraph onto the range of f by f :epif — R; f((z,y)) = y. Notice
that if we project the level sets of f back into the domain of our function, we get
the sublevel sets of f, which we denote by F, = f~1(—o00,a] = mx(f(a)).
The Reeb graph of function f, denoted by T}, is called the merge tree of

Interleaving Distance between Merge Trees 3

R
epi f Ty

)

Fq

X

Fig. 1 A graph of function f : X — R together with its merge tree, Ty. The three compo-
nents of a levelset of the projection f : epi f — R are highlighted in bold together with the
points of the merge tree that represent them. This levelset projects onto the sublevel set,
F,, highlighted inside the domain, X.

function f; see Figure 1. Intuitively, it keeps track of the evolution of connected
components in the sublevel sets of f. A component appears at a minimum
and grows until it merges with another component at a saddle. We note that
according to our definition, a merge tree extends to infinity. This formulation
differs from what usually appears in literature, where the root of the merge
tree is taken to be the global maximum of the function. This distinction is
minor, but useful to us for technical reasons that will become clear in the next
section.

Since the points identified by the equivalence relation in the definition of
a merge tree belong to the same level sets of f, they have the same function
value. Therefore, there is a well-defined map f : Ty — R from the merge
tree to the range of f — it is the unique map that satisfies f = fo q, where
q :epi f — Ty is defined by ¢(z) = y, where y is the component of the level
set f~1(f(z)) that contains x.

We denote by i : Ty — T the e-shift map in the tree Ty. To define it,
recall that = € T, with f (x) = a, represents a connected component X in the
sublevel set F, of function f. The inclusion of sublevel sets F, C F, . maps
X into a connected component Y of F, .. Let y represent this component in
the tree Ty. Then i°(z) = y. In other words, to find the image of x under °,
we simply follow the path from x to the root of T until we encounter a point

y with f(y) =a +e.

Persistent homology. A 0—dimensional homology group of a space Y, denoted
by Ho(Y), is a group of formal sums of connected components of Y. For sim-
plicity, consider coefficients in Z5. In this case, an element of Hy(Y") is a set of
connected components of Y; the group operation is the symmetric difference
of sets. If space Y is a subset of some space Z, Y C Z, then the inclusion of
spaces maps connected components of Y into connected components of Z, and
so induces a map between homology groups, ¢ : Ho(Y) — Ho(Z2).

Given a function f : X — R, we can track the evolution of homology groups
of its sublevel sets, F,. We get a sequence of groups, Ho(F,), connected by

4 Dmitriy Morozov et al.

homomorphisms 2 : Ho(F,) — Ho(F}) induced by the inclusions F, C Fj,
where a < b. A connected component x is born in this sequence at Hg(Fy)
when it is not in the image of the inclusions from preceding sublevel sets:
x ¢ L(Ho(F,)) for all a < b. This component dies at Ho(Fy) if it is in the
image of a homology group preceding Ho(F}), tf(x) € 14(F,) for some a < b,
but ¢ (x) ¢ 15(Fy) for any b < ¢ < d.

The collection of all such birth-death pairs (b, d), together with all the
points (a,a) on the diagonal taken with infinite multiplicity, is called 0-
dimensional persistence diagram and is denoted by Dgm,(f). A fundamental
property of persistence diagrams is their stability. To express it, we need the
notion of a bottleneck distance.

Definition 1. The bottleneck distance between two multi-sets of points X
and 'Y is

dp(X,Y) = infsup |z — ()],

where v goes over all possible bijections between X and Y, and || —v(x)|oo =

max{|b; — by‘a [dy|} if v = (by,dy) and y(x) = (by»dy)-

Stability was originally proved by Cohen-Steiner et al. [4] for two functions
defined on the same domain. Over the years their result was strengthened. In
Section 5, we will need the following formulation of the stability theorem for
persistence diagrams, which is simplified from the statement due to Chazal et
al. [1]. To state it, we need an additional notion of tameness. In our case, it
simply means that all the sublevel sets of a function have a finite number of
connected components.

Definition 2. A function f : X — R is called tame if the dimension of the 0-
dimensional homology group of its every sublevel set is finite, dim Hy(F,) < oo
for all a € R. In this case, we also call the sequence of homology groups,

Ho(FL), tame.

Theorem 1. Two sequences of homology groups, Ho(F,) and Ho(G,), are
e-interleaved if there are maps

such that their compositions commute with the maps A2 : Ho(F,) — Ho(Fy)
and K : Ho(Gq) — Ho(GYy) induced by inclusions.

Given two tame sequences of homology groups, Ho(Fy) and Ho(G,), we
denote their persistence diagrams by Dgm(F) and Dgm(G). If the sequences
are e-interleaved, then the bottleneck distance between the diagrams does not
exceed €:

ds(Dgmy(F), Dgm,(G)) < e.

Interleaving Distance between Merge Trees 5

Fig. 2 Compatible maps between two trees.

3 Interleaving Distance

To define the central object of our paper, suppose that we have two merge
trees, Ty and Ty, with the corresponding maps f : Ty — R and g : T, — R.
We begin with an auxiliary notion of e-compatible maps.

Definition 3. Two continuous maps o : Ty — T and 3° : Ty — Ty are said
to be e-compatible, for some ¢ > 0, if

§(a*(2)) = f(z) +e, FB° () = ay) +e,

BE oaf = Z~267 af Oﬁs :j257

where i%¢ : Ty — Ty and j*¢ : T, — T, are the 2e-shift maps in the respective
trees.

In other words, two maps are e-compatible if they commute with the shift
maps in the respective trees. We note that since maps o and ¢ are continuous,
the conditions for e-compatibility extend to the following relations for all a > 0:

a+2e a+2e
9)

ﬁsojaOaEZi Ozso’iaoﬁ€=j

jaoaa:aeoia7 iaoﬁE:ﬁaoja'
The interleaving distance finds the best e-compatible maps.

Definition 4. The interleaving distance, di(Ty, Ty), between two merge trees,
Tt and Ty, is the greatest lower bound on € for which there are e-compatible
maps:

di(Ty,Ty) = inf{e | there are e-compatible maps o : Ty — T4, 3% : Ty — Ty}

It is not difficult, but still worthwhile, to verify that the interleaving dis-
tance is a metric on the space of merge trees.

Lemma 1 (Metric). The interleaving distance, dy, is a metric. In other words,
it satisfies the following properties:

1. dI(T7 T) = 0,’

2. dI(Tl,TQ) = dI(Tg,Tl),‘
3. di(T1,T3) < di(Th,T3) + di(T5, T5).

6 Dmitriy Morozov et al.

Proof. The first property is immediate if we take maps o’ and 3° to be the
identity on tree T. The second property follows from the symmetry of the
definition of the interleaving distance.

To show the third property, suppose di(T1,7%) = €1. Then, for all § > 0,
there are (g1 + d)-compatible maps, a%'“; : Ty — Ty and ﬂgi""s Ty — Ty.
Similarly, suppose di(Ts,75) = 3. Then, for all § > 0, there are (g2 + §)-
compatible maps, a§§+5 Ty — Ty, §§+5 : Ty — T5. Denote by i : T} —
11,45 : T5 — 5, and 4§ : T5 — T3 the a-shift maps in the respective trees.

Given § > 0, let €3 = &1 + &9 and define o531 : Ty — Ty and 85370 : Ty —
Ty as the compositions:

€3+ _ e2+0/2 €1+0/2
Q3 = Qa3 0 g)
e3+0 _ pE1+d/2 ° ea+6/2
31 - M21 32 .

These two maps are (e3 + ¢)-compatible since
2(ez+0) _ .2(e1+e2+9)
51 =n

e1446/2 ° i3(52+6/2) o ai‘;-&-é/Z

— Pa1
_ pe1t6/2 eo+6/2 ea+46/2 e1446/2
= P21 O P32 O Qg3 0 Qg
__ €3+6 es3+d
=P31 013 -
.. 2(e34+0) _ _e3+46 e3+0
Similarly, 75 =73 "0 B8,

Therefore, since the statements hold for all § > 0, di(71,73) < e3 =
di(Th, Tz) + di(T, T3).

O

4 Stability

To be a reliable descriptor, merge trees must be stable: if we change a function
a little, its tree should only change a little. We show that this is indeed true
if we compare trees using the interleaving distance.

Theorem 2 (Stability). Given two scalar functions f,g: X — R, let Ty and
T, denote their merge trees. The interleaving distance between the trees does
not exceed the largest difference between the two functions:

di(Ty, Ty) < sup |f(x) — g(x)]-

Proof. Let € = sup, |f(z) — g(x)| be the largest difference between the two
functions. Recall that F, = f~!(—o0, a] and G}, = g~ (—o00, b] denote sublevel
sets of these functions. Since the largest difference between the functions is ¢,
their sublevel sets include into each other:

Fa g Ga+6 g Fa+2€~

These inclusions induce maps between the merge trees. A point = in the
merge tree Ty with f(z) = a corresponds to a component in sublevel set Fy,.

Interleaving Distance between Merge Trees 7

Death

Birth

Fig. 3 The interleaving distance between the two trees in the figure is positive — it is equal
to half the size of the smallest branch — but the corresponding functions have identical
persistence diagrams.

The inclusion F,, € G4+ maps this component to a component in sublevel set
Gaxe; let point y € T, represent this component in the merge tree of g. Thus
the inclusion of the sublevel sets induces a map o : Ty — T}, defined via the
above construction as a°(z) = y. Conversely, we have a map ¢ : T, — Ty. By
construction, if f(z) = a, then §(a®(x)) = a + ¢, and vice versa, if §(y) = a,
then f(B°(y)) = a +e¢.

The inclusion of the sublevel sets of a single function produces the shift
maps, defined in Section 2. The inclusion F, C Fj o, induces a map i% .
Ty — Ty that maps a point = € Ty with f(z) = a into its ancestor y € T}
with f(y) = a 4 2. Similarly, we have a shift map 5% : T, — T,. Since the
maps af, 3,12, and j2¢ are induced by inclusions, they commute:

ﬁe oaf = ,L-25 af 056 :j2€-

Therefore, by definition, o and ¢ are e-compatible, and the interleaving
distance does not exceed ¢, di(Ty,Ty) < e. O

5 Bottleneck Distance between Persistence Diagrams

It is not difficult to construct an example where the bottleneck distance be-
tween O—-dimensional persistence diagrams is arbitrarily smaller than the in-
terleaving distance between merge trees; see Figure 3. The main result of this
section, stated in Theorem 3, shows that the former can never be larger than
the latter.

Theorem 3. Given two tame functions, f : X — R and g : Y — R, the
bottleneck distance between their persistence diagrams does not exceed the in-
terleaving distance between their merge trees:

dg(Dgmg(f), Dgmy(9)) < di(Ty, Ty)-

Proof. First of all, notice that the O—dimensional persistence diagram of the
function f : X — R is the same as the persistence diagram of the function
f: Ty — R; Dgmgy(f) = Dgm,(f). This fact follows immediately from the
definition of merge trees: collapsing components of sublevel sets to points does

not change the 0—dimensional homology groups.

8 Dmitriy Morozov et al.

Accordingly, we need to show that dg(Dgm(f),Dgmy(g)) < di(Ty,T,).
Let F, = f~1(—00,a] and G4 = §~'(—00,a] denote the sublevel sets of the
functions on merge trees. Let ¢ = di(T,T,). Then, by definition of the in-
terleaving distance, for all § > 0, there are two maps a°*? : Ty — T, and
pEto T, — Ty that commute with the shift maps. It follows that the two
sequences of homology groups, Hg(ﬁ'a) and Ho(éa), are (£ + d0)-interleaved in
the sense of Theorem 1. Therefore, by the same theorem, their persistence

diagrams are close, dg(Dgmg(f), Dgmy(g)) < €+ 4. Since the last statement

is true for all § > 0, we have dg(Dgm,(f),Dgmy(g)) < €, and our theorem’s
claim follows. O

6 Conclusion

In this paper, we have defined an interleaving distance between merge trees. We
have proved that this metric is no less sensitive than the bottleneck distance
between 0—dimensional persistence diagrams, yet it is still stable to perturba-
tions of the function.

It is not difficult to devise an exponential-time algorithm to find this dis-
tance given two merge trees. To do so, one can take advantage of the continuity
of the e-compatible maps in Definition 3. Accordingly, to check existence of
e-compatible maps for a fixed e, it suffices to try all possible maps on the
leaves of the two trees (each leaf has only a finite set of targets, if the trees are
finite), extend the corresponding e-compatible maps continuously and verify
their consistency on the saddles.

The next logical step towards using interleaving distance as a metric in
applications is to devise an efficient algorithm that calculates it.

Acknowledgements This work was supported by the Director, Office of Science, Advanced
Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231 through the grant “Topology-based Visualization and Analysis of High-
dimensional Data and Time-varying Data at the Extreme Scale,” program manager Lucy
Nowell.

References

1. Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Oudot.
Proximity of persistence modules and their diagrams. In Proceedings of the Annual
Symposium on Computational Geometry, pages 237-246, 2009.

2. Frédéric Chazal, David Cohen-Steiner, Leonidas Guibas, Facundo Mémoli, and Steve
Oudot. Gromov-hausdorff stable signatures for shapes using persistence. In Computer
Graphics Forum, volume 28, pages 1393—1403, 2009. Special issue 6th Annual Symposium
on Geometry Processing.

3. David Cohen-Steiner and Herbert Edelsbrunner. Inequalities for the curvature of curves
and surfaces. Foundations of Computational Mathematics, 7:391-404, 2007.

4. David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence
diagrams. Discrete and Computational Geometry, 37:103-120, 2007.

Interleaving Distance between Merge Trees 9

5. David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards
by updating persistence in linear time. In Proceedings of the Annual Symposium on
Computational Geometry, pages 119-126, 2006.

