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Abstract

Motivated by the measurement of local homology and of

functions on noisy domains, we extend the notion of persis-

tent homology to sequences of kernels, images, and coker-

nels of maps induced by inclusions in a filtration of pairs of

spaces. Specifically, we note that persistence in this context

is well defined, we prove that the persistence diagrams are

stable, and we explain how to compute them.
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1 Introduction

Natural phenomena are often modeled in terms of spaces and

functions on these spaces. We argue that it is almost always

more appropriate to use a multi-scale hierarchy instead of a

single space. One reason is the prevalent multi-scale orga-

nization we find in nature, another is that the data we gather

about nature is necessarily incomplete and requires interpo-

lation. The multi-scale aspect helps bridging the gap be-

tween the data about natural phenomena and the idealized

mathematical concepts we use for exploration. In particu-

lar, we consider homology groups, which are algebraic struc-

tures that define and count holes in a topological space [11].

Their multi-scale extensions are persistent homology groups

introduced in [10, 13]. Similar to homology which not only

counts but also defines, persistent homology not only mea-

sures but also creates the hierarchy.

In all previous settings, the hierarchy is defined by a nested

sequence of spaces, X0 ⊆ X1 ⊆ . . . ⊆ Xm, and persis-
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tent homology arises from considering the corresponding se-

quence of homology groups, H(X0) → H(X1) → . . . →
H(Xm), connected from left to right by homomorphic maps

induced by inclusion. Persistence tracks when a homology

class is born and when it dies. This can also be done for

an arbitrary sequence of vector spaces connected by homo-

morphic maps. Motivation for studying such more general

sequences is derived from recent investigations in computa-

tional topology. First, Bendich et al. describe a multi-scale

assessment of local homology for the purpose of reconstruct-

ing a stratified space from a point sample [2]. We will see

how sequences of kernels can be used to refine their con-

struction. Second, we use sequences of images to introduce

a notion of persistence that filters out noise induced by im-

precise specifications of domains. This contrasts standard

persistence which can handle imprecise function values but

not imprecise domains. As an application, we will approxi-

mate the persistence diagram of a function knowing only its

values at a finite set of points. The main contributions of this

paper are two-fold:

• an algorithm that computes the persistence diagrams of

sequences of kernels, images, and cokernels in time at

most cubic in the size of the simplicial complexes rep-

resenting the data;

• applications of the algebraic and algorithmic results to

measuring local homology and to approximating persis-

tence diagrams of noisy functions on noisy domains.

Outline. The remainder of this paper is structured as fol-

lows. Section 2 introduces the algebra of persistent homol-

ogy including its extension to sequences of kernels, images

and cokernels. Section 3 explains the algorithms for com-

puting the corresponding persistence diagrams for a nested

sequence of pairs of spaces and Section 4 proves their cor-

rectness. Section 5 presents the two applications of our alge-

braic and algorithmic results. Section 6 concludes the paper.



2 Algebra

Beginning with a review of persistent homology, this section

extends this concept to sequences of kernels, images, and

cokernels. It also proves that the persistence diagrams of

these extensions are stable.

Persistent homology. This concept is a recent addition to

classical homology theory and was originally introduced for

ordered simplicial complexes [10]. We follow the exposition

in [6] in which we have a topological space X and a continu-

ous function f : X → R. The sublevel set defined by a ∈ R

consists of all points with function value at most the thresh-

old, Xa = f−1(−∞, a]. We use the algebraic language of

homology theory to characterize how Xa is connected, see

e.g. [11]. Adding chains with modulo-2 arithmetic, we write

Hp(Xa) for the dimension p homology group over Z/2Z of

Xa and H(Xa) = (. . . ,Hp(Xa),Hp+1(Xa), . . .) for the infi-

nite series obtained by collecting the groups for all dimen-

sions. Of course, only the groups for p between 0 and the

dimension of Xa are possibly non-trivial. To simplify lan-

guage, we will often ignore the difference between a single

homology group and the entire series. Given a ≤ b, the

inclusion between the sublevel sets, Xa ⊆ Xb, induces a ho-

momorphism, fa,b : H(Xa) → H(Xb). For a = b this is an

isomorphism and for a < b it may or may not be an isomor-

phism. A value a ∈ R is a homological critical value of f if

there is no sufficiently small ε > 0 for which fa−ε,a+ε is an

isomorphism. We assume that f is tame, that is, it has only

finitely many critical values and every sublevel set has only

finite rank homology groups.

Let a1 < a2 < . . . < am be the critical values of f and

consider an interleaved sequence si−1 < ai < si for all i.
This gives a sequence of spaces, X0 ⊆ X1 ⊆ . . . ⊆ Xm =
X, where we simplify notation by writing Xi = Xsi

, and a

corresponding sequence of homology groups connected by

homomorphisms,

H(X0) → H(X1) → . . .→ H(Xm).

Persistence concerns itself with the history of individual ho-

mology classes within this sequence. Specifically, a class

γ in H(Xi) is born at ai if it is not in the image of fi−1,i =
fsi−1,si

. More precisely, an entire coset is born at ai. Further-

more, if γ is born at ai we say it dies entering aj if fi,j−1(γ)
is not contained in the image of fi−1,j−1 but fi,j(γ) is con-

tained in the image of fi−1,j . The images of the maps fi,j are

referred to as persistent homology groups since they consist

of all homology groups born at or before ai that live beyond

aj . Nothing about the definition of birth and death is spe-

cific to homology groups. In other words, persistence makes

perfect sense for any sequence of vector spaces connected by

homomorphisms.

It is convenient to represent the fact that γ is born at ai

and dies entering aj by drawing the point (ai, aj) in the

two-dimensional plane. By collecting the points for all p-

dimensional classes we get the dimension p persistence dia-

gram which we denote as Dgmp(p). Since birth necessarily

happens before death all points lie above the diagonal. It

is also possible that a class γ is born at ai but does not die

since it represents a class of Xm = X. In this case, we draw

γ as the point (ai,∞) in the diagram. For technical reasons

that will become clear later, we consider all points on the

diagonal to be part of the persistence diagram. Similar to

homology groups we get a diagram for each dimension and

we write Dgm(f) for the infinite series of diagrams. Same

as for homology groups and for the maps between them we

will simplify language by ignoring the difference between a

single diagram and an entire series.

Kernels, images, and cokernels. For the extension of per-

sistence to kernels, images, and cokernels we consider two

functions, f : X → R and a majorizing function g : Y → R

defined on a subspace Y ⊆ X, that is, f(y) ≤ g(y) for all

y ∈ Y ⊆ X. Assuming both functions are tame, we or-

der the collection of critical values of f and g and interleave

them with a sequence of real values si. The corresponding

sequences of sublevel sets give rise to two parallel sequences

of homology groups,

H(X0) → H(X1) → . . . → H(Xm)

↑ j0 ↑ j1 . . . ↑ jm

H(Y0) → H(Y1) → . . . → H(Ym),

where Xi = f−1(−∞, si] and Yi = g−1(−∞, si]. The two

sequences are connected by homomorphisms ji : H(Yi) →
H(Xi) induced by the inclusions Yi ⊆ Xi. We call this the

two function setting, in contrast to the more special one func-

tion setting in which g is the restriction of f to Y. More about

the relationship between the two settings later. We are inter-

ested in the kernels, images, and cokernels of the connecting

homomorphisms,

ker ji = {γ ∈ H(Yi) | ji(γ) = 0 ∈ H(Xi)};

im ji = {ji(γ) ∈ H(Xi) | γ ∈ H(Yi)};

cok ji = H(Xi)/im ji.

We note that the “coimage” of the map ji, in symbols

H(Yi)/ker ji, is isomorphic to the image of this map, and

therefore does not deserve any special attention. Figure 1 il-

lustrates this construction for two contiguous spaces in both

sequences. The square defined by the four homology groups

commutes. It follows that the inclusion Yi ⊆ Yi+1 induces

a homomorphism ker ji → ker ji+1. Similarly, the inclu-

sion Xi ⊆ Xi+1 induces a homomorphism im ji → im ji+1

and another homomorphism cok ji → cok ji+1. We thus get
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H(Xi)

imji

ji

kerji

H(Yi)

kerji+1

ji+1

imji+1

H(Xi+1)

H(Yi+1)

Figure 1: A square of four homology groups and the maps between

them. The square commutes because all four maps are induced by

inclusions.

sequences of kernels, images, and cokernels,

Ker(g→f) : ker j0 → ker j1 → . . .→ ker jm;

Im(g→f) : im j0 → im j1 → . . .→ im jm;

Cok(g→f) : cok j0 → cok j1 → . . .→ cok jm,

all connected from left to right by homomorphisms. Homol-

ogy classes are born and die in these sequences same as in the

sequences of homology groups. We can therefore define per-

sistent kernels, persistent images, and persistent cokernels

as well as construct the corresponding persistence diagrams,

which we denote as Dgm(ker g→f), Dgm(im g→f), and

Dgm(cok g→f).

Birth-death combinations. We consider the generic case

in which changes happen one at a time. An event thus corre-

sponds to a birth, a death, or no change in the kernel, in the

image, and in the cokernel, giving rise to 27 different combi-

nations. But the ranks of these groups are not independent,

that is,

rank ker ji + rank im ji = rankH(Yi);

rank im ji + rank cok ji = rankH(Xi),

for all i. We can therefore relate the births and deaths in the

three sequences using the births and deaths in the sequences

of homology groups of the Yi and of the Xi. The first equa-

tion eliminates two of the nine combinations for kernels and

images. Another combination is eliminated by ker ji being

a subgroup of H(Yi), hence a death in the kernel implies a

death in the homology group. Table 1 lists the remaining six

cases. Case A occurs for example when Yi−1 = Xi−1 = Yi

is a circle and Xi is obtained by adding a spanning disk. Case

B occurs when Yi−1 = Xi−1 is a point and Yi = Xi is ob-

tained by adding an arc that completes the point to a circle.

Case ker ji im ji H(Yi)

A birth death —

B — birth birth

C, D — — —

E — death death

F death — death

P birth — birth

Table 1: The five cases in the two function setting relating kernels

and images. Except for Case P they also occur in the one function

setting.

Case C occurs when Yi−1 = Xi−1 = Yi is a point and Xi is

again obtained by adding an arc that forms a circle. We also

retain ranks in Case D which occurs when Xi−1 is a circle,

Yi−1 = Yi is a point on this circle, and Xi is obtained by

adding a spanning disk. Case E occurs when Yi−1 = Xi−1

is a circle and Yi = Xi is obtained by adding a spanning

disk. Case F occurs when Xi−1 is a disk, Yi−1 is its bound-

ary circle, and we get Yi and Xi by adding another spanning

disk to both spaces. Finally, Case P occurs when Xi−1 = Xi

is a disk, Yi−1 is a point of its boundary circle, and Yi is ob-

tained by adding the rest of the circle. This last case happens

in the two function setting but not in the one function setting

because it requires points that are added to the sublevel set

of g strictly after they are added to the sublevel set of f .

Similarly, the second equation eliminates two of the nine

combinations for images and cokernels. Another combina-

tion is eliminated by im ji being a subgroup of H(Xi), hence

a death in the image implies a death in the homology group.

Table 2 lists the remaining six cases. Cases A to F have been

Case im ji cok ji H(Xi)

A, E death — death

B birth — birth

C, F — birth birth

D — death death

Q — — —

R birth death —

Table 2: The five cases in the two function setting relating cokernels

and images. Except for Cases Q and R they also occur in the one

function setting.

described above and the example for Case P also works for

Case Q. Case R occurs when Xi−1 = Yi = Xi is a circle

and Yi−1 is a point on that circle. Cases Q and R do not hap-

pen in the one function setting in which every change has a

non-zero effect on the rank of the homology group of Xi.

Mapping cylinder. We reduce the two function setting to

the one function setting using a construction that will be ex-

ploited by the algorithm described in Section 3. Specifically,

the mapping cylinder of the pair Y ⊆ X is the space X
′ =

X ∪ (Y × [0, 1]) obtained by gluing Y ⊆ X to Y × {0} ⊆
Y × [0, 1]. This is illustrated in Figure 2. The function

f ′ : X
′ → R agrees with f on X and with g on Y

′ = Y×{1},
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Y× 0 X

Y× 1

Figure 2: The mapping cylinder of Y ⊆ X.

linearly interpolating in between, that is, f ′(x) = f(x) for

every x ∈ X and f ′(y, t) = (1 − t)f(y) + tg(y) for every

y ∈ Y and every t ∈ [0, 1]. The pair of functions f ′ and

g′ = f ′|Y′ induces homomorphisms j′i : H(Y′
i) → H(X′

i);
see Figure 3. The corresponding sequences of kernels, im-

ages, and cokernels are

Ker(g′→f ′) : ker j′0 → ker j′1 → . . .→ ker j′m;

Im(g′→f ′) : im j′0 → im j′1 → . . .→ im j′m;

Cok(g′→f ′) : cok j′0 → cok j′1 → . . .→ cok j′m.

We claim that they contain the same information as the se-

quences Ker(g→f), Im(g→f), and Cok(g→f).

H(X′
i) H(X′

i+1)

H(Xi) H(Xi+1)

H(Y′
i) H(Y′

i+1)

H(Yi) H(Yi+1)

//77ooo //OO 77ooo
j′i // OO

j′i+1OO
ji 77ooo // 77oooOO

ji+1

Figure 3: The diagram of homology groups of two contiguous sub-

level sets of f, g, f ′, g′. The diagram commutes because ten of the

twelve maps are induced by inclusions, and the left and right maps

of the bottom square are induced by the inverses of the mapping

cylinder retractions restricted to Y
′
i and Y

′
i+1 respectively.

MAPPING CYLINDER LEMMA. The pairs of functions

f, g and f ′, g′ define the same persistence diagrams for

kernels, images, and cokernels: Dgm(grp g→f) =
Dgm(grp g′→f ′) for grp ∈ {ker , im , cok }.

PROOF. We note that Xi is a deformation retract of X
′
i. This

implies that the map from H(Xi) to H(X′
i) induced by the

inclusion Xi ⊆ X
′
i is an isomorphism. Similarly, the map

from H(Yi) to H(Y′
i) implied by the inverse of the retrac-

tion is an isomorphism. The maps ji : H(Yi) → H(Xi)
and j′i : H(Y′

i) → H(X′
i) are also induced by inclusions

which implies that the left square in the diagram of Figure 3

commutes. It follows that the pairs of kernels, images, and

cokernels are isomorphic, ker ji ≃ ker j′i, im ji ≃ im j′i,
and cok ji ≃ cok j′i. Similarly, the right square commutes

and the kernels, images, and cokernels of ji+1 and j′i+1

are isomorphic. To prove that the two sequences of ker-

nels define the same persistence diagram we still need to

consider the bottom square in Figure 3. The left and right

maps are isomorphisms and the square commutes by con-

struction. Hence Dgm(ker g→f) = Dgm(ker g′→f ′).
Similarly, we get Dgm(im g→f) = Dgm(im g′→f ′) and

Dgm(cok g→f) = Dgm(cok g′→f ′) by considering the

top square in Figure 3.

Stability. An important property of the persistence dia-

grams is their stability originally proved in [6]. More pre-

cisely, the bottleneck distance between the diagrams of two

functions f and f ′′ is bounded from above by the dif-

ference between the functions, dB(Dgm(f),Dgm(f ′′)) ≤
‖f − f ′′‖∞. Here dB is the maximum of ‖u− γ(u)‖∞,

where u is a point in the diagram of f and γ is a dimension-

preserving bijection between the diagrams of f and of f ′′.

Recall that the points on the diagonal belong to the diagrams

and can therefore be used in the effort to find a matching

γ that minimizes the length of the longest edge. The proof

of stability given in [6] can be adapted to the setting in this

paper. Specifically, we consider the maps ja : H(Ya) →
H(Xa) and j′′aε

: H(Y′′
a+ε) → H(X′′

a+ε), where ε is the larger

of the two differences between functions, ‖f − f ′′‖∞ and

‖g − g′′‖∞, and Ya, Xa, Y
′′
a+ε, X

′′
a+ε are the sublevel sets

of g, f , g′′, f ′′ for thresholds a and a+ ε. To adapt the proof

we need that the maps induced by the inclusions Ya ⊆ Y
′′
a+ε

and Xa ⊆ X
′′
a+ε send the kernel of ja into the kernel of j′′a+ε.

But this follows from the commutativity of the diagram

H(Xa) → H(X′′
a+ε)

↑ ja ↑ j′′a+ε

H(Ya) → H(Y′′
a+ε).

Similarly, we need that the inclusions Y
′′
a ⊆ Ya+ε and X

′′
a ⊆

Xa+ε send ker j′′a into ker ja+ε which follows by symmetry.

With this property the original proof of stability goes through

and we refer to [6] for details. The arguments for the images

and the cokernels are the same and we state the results.

STABILITY THEOREM. Let f, f ′′ : X → R and g, g′′ :
Y → R with f(y) ≤ g(y) and f ′′(y) ≤ g′′(y) for every

y ∈ Y ⊆ X and ε = max{‖f − f ′′‖∞, ‖g − g′′‖∞}. Then

the bottleneck distance between the persistence diagrams is

bounded from above by the difference between the functions:

dB(Dgm(grp g→f),Dgm(grp g′′→f ′′)) ≤ ε,

for grp ∈ {ker , im , cok }, provided f , g, f ′′, and g′′ are

continuous and tame and there is a triangulation of X in

which Y arises as a subcomplex.
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3 Algorithms

In this section, we describe the algorithms for computing the

persistence diagrams of the sequences of kernels, images,

and cokernels. At their core is the reduction of a matrix as

introduced in [8] which we describe first.

Matrix reduction. To get a finite representation of the data

we now substitute a function on a simplicial complex for the

continuous function on a topological space. In particular, we

assume a (finite) simplicial complexK and an injective func-

tion f : K → R that maps each simplex to a real number.

The only additional requirement is f(σ) < f(τ) whenever σ
is a face of τ . Equivalently,Ka = f−1(−∞, a] is a subcom-

plex ofK for every a ∈ R. We index the simplices ofK such

that f(σ1) < f(σ2) < . . . < f(σm) and let Ki be the com-

plex consisting of the first i simplices in the sequence. To

compute persistence for the sequence of complexes Ki we

letD be them-by-m incidence matrix defined byD[ℓ, i] = 1
if σℓ is a co-dimension one face of σi and D[ℓ, i] = 0 oth-

erwise. We reduce D using left-to-right modulo-2 column

additions until the lowest one of every non-zero column is in

a unique row. Initializing R and V to the incidence and the

identity matrices and letting low(i) be the row index of the

lowest one in column i ofR, or 0 if the entire column is zero,

we can formalize the algorithm as follows.

R = D; V = I;

for i = 1 tom do

while ∃k < i with low(k) = low(i) 6= 0 do
add column k to column i in R as well as in V

endwhile

endfor.

Equivalently, the reduced matrix is obtained by multiplying

the incidence matrix from the right with an upper-triangular

matrix, R = DV , such that the map from the non-zero

columns of R to the row indices of their lowest ones is in-

jective. As proved in [8], R is not unique but the map is. By

V

=

R D

Figure 4: The reduced matrix equals the incidence matrix times the

chain matrix. All three are upper-triangular.

construction, the rows of R and V correspond to individual

simplices, same as the rows of D, but the columns of R and

V correspond to chains. Specifically, column i of R stores

the boundary of the chain stored in column i of V . We call

σi positive if its addition to Ki−1 gives birth to a homology

class. Equivalently, column i of V stores a cycle and column

i of R is zero. Symmetrically, we call σi negative if its addi-

tion to Ki−1 gives death to a homology class. Equivalently,

column i of V stores a chain that is not a cycle and column

i of R is non-zero. The significance of the lowest one in this

column of R is that the negative σi is paired with the posi-

tive σℓ, with ℓ = low(i), which gives birth to the class that

σi kills.

The persistence diagrams of f can be obtained from the

reduced matrix. Specifically, each lowest one, ℓ = low(i),
corresponds to a pair of simplices, σℓ, σi, and we draw the

point (f(σℓ), f(σi)) in the diagram whose dimension is the

same as that of σℓ.

Partial and reordered matrices. We prepare the compu-

tation of the persistence diagrams by reducing five matrices.

By the Mapping Cylinder Lemma, we can restrict ourselves

to the one function setting. We therefore assume two sim-

plicial complexes, L ⊆ K , let f : K → R be an injective

function whose sublevel sets are subcomplexes of K , and let

g be the restriction of f to L. We write Df for the incidence

matrix ofK whose rows and columns are ordered by f . Sim-

ilarly, we writeDg for the incidence matrix of L whose rows

and columns are ordered by g.

Step 1 Reduce the two incidence matrices to get Rf =
DfVf and Rg = DgVg .

Step 2 Reorder the rows of Df leaving the columns un-

touched to get a new matrix Dim . Specifically, its rows

correspond to the simplices inL, ordered by g, followed

by the simplices in K − L, ordered by f . Reduce the

new matrix to get Rim = DimVim ; see Figure 5.

L L

Rim Dim Vim

=

K K

K

K

K-L K-L

Figure 5: Matrices computed in the reduction of the incidence ma-

trix of K with reordered rows. The matrix Vim is upper-triangular

with all ones in the diagonal.

Step 3 Delete some of the columns from Vim and reorder

the rows to get a new matrix Dker . Specifically, keep

the columns that represent cycles and remove all others.

Furthermore, reorder the rows so they correspond to the

simplices in L, ordered by g, followed by the simplices

in K −L, ordered by f . Finally, reduce the new matrix

to get Rker = Dker Vker .

Step 4 Starting again with Df , replace some of the columns

to get a new matrix Dcok . Specifically, substitute

5



columns in Vg that represent cycles for the correspond-

ing columns in Df , adding zeros to compensate for the

simplices in K − L, which are missing in Vg . Reduce

the new matrix to get Rcok = Dcok Vcok .

We note that reducing Df is redundant because the type

information it furnishes is also available from Rim . We

still use Rf because this clarifies which information is used

where.

Births, deaths, and pairs. We use the reduced matrices to

compute the persistence diagrams of the sequences of ker-

nels, images, and cokernels. Specifically,Rf andRg (and in

one case Rim ) decide which simplices give birth and which

give death and Rker , Rim , Rcok determine how the births

match up with the deaths. We begin with the sequence of

kernels and recall the relevant Cases A and F in Table 1.

Algorithm for kernels:

Birth. A simplex σ gives birth in Ker(g→f) iff σ ∈ K −L,

σ is negative in Rf , and the lowest one in its column in

Rim corresponds to a simplex in L.

Death. A simplex τ gives death in Ker(g→f) iff τ ∈ L, τ
is negative in Rg , and τ is positive in Rf . In this case,

the lowest one in the column of τ in Rker corresponds

to a simplex σ ∈ K − L that gives birth in Ker(g→f).
Then (σ, τ) is a pair.

A dimension p homology class is given birth to in the kernel

by a (p+1)-simplex and it dies at the hand of another (p+1)-
simplex. The dimension p persistence diagram thus consists

of all points (f(σ), f(τ)) encoding pairs of (p+1)-simplices

identified in the Death case as well as all points (f(σ),∞)
encoding unpaired (p + 1)-simplices identified in the Birth

case. We continue with the sequence of images and recall

the relevant Cases A, B, E in Tables 1 and 2.

Algorithm for images:

Birth. A simplex σ gives birth in Im(g→f) iff σ ∈ L and σ
is positive in Rg .

Death. A simplex τ gives death in Im(g→f) iff τ is neg-

ative in Rf and the lowest one in its column in Rim

corresponds to a simplex σ ∈ L. Then (σ, τ) is a pair.

Note that the Death case splits into Case A with τ ∈ K − L
and Case E with τ ∈ L. The dimension p persistence dia-

gram consists of all points (f(σ), f(τ)) encoding pairs of p-

and (p+ 1)-simplices identified in the Death case as well as

points (f(σ),∞) encoding unpaired p-simplices identified

in the Birth case. We continue with the sequence of coker-

nels and recall the relevant Cases C, F and D in Table 2.

Algorithm for cokernels:

Birth. A simplex σ gives birth in Cok(g→f) iff σ is positive

in Rf and it is either in K − L or negative in Rg.

Death. A simplex τ gives death in Cok(g→f) iff τ is neg-

ative in Rf and the lowest one in its column in Rim

corresponds to a simplex in K − L. In this case, the

lowest one in the column of τ in Rcok corresponds to a

simplex σ that gives birth in Cok(g→f). Then (σ, τ) is

a pair.

The dimension p persistence diagram consists of all points

(f(σ), f(τ)) encoding pairs of p- and (p+1)-simplices iden-

tified in the Death case as well as points (f(σ),∞) encod-

ing unpaired p-simplices identified in the Birth case. The

running time of the three algorithms is O(m3), same as the

original persistence algorithm given in [10]. Furthermore,

it is possible to extend the algorithm in [8] so that it main-

tains the reduced matrices in time O(m) per transposition of

contiguous simplices in the ordered sequences; details can

be found in Appendix A. This is the method of choice for

computing the vineyard of a pair of 1-parameter families of

functions f and g, as they arise in applications considered in

Section 5.

4 Correctness

We prove the correctness of the algorithms inductively, by

considering one simplex at a time. For each index i, we con-

sider the actual births, deaths, and pairs that occur in the se-

quences up to ji, and the computed births, deaths, and pairs

reported by the algorithm working on the simplices up to σi.

To prove that the corresponding sets are the same at the end,

for i = m, we show they are the same throughout, for all i.
We do this in two steps, first proving that the algorithms are

necessary and second that they are sufficient. In other words,

we first prove that the computed information is correct and

second that it is complete.

Preparation. We begin with a few preliminary observa-

tions. Recall that Tables 1 and 2 list the possible combina-

tions of births and deaths under the simplifying assumption

that each group has at most one change happening at any one

time. This is indeed the situation if we add individual sim-

plices to a growing complex. We can therefore use the two

tables in the correctness proof, but since we only consider

the one function setting, we can further simplify and com-

bine them into Table 3. We get Ki by adding σi to Ki−1. If

Case ker ji im ji cok ji H(Li) H(Ki) σi

A birth death — — death K − L

B — birth — birth birth L

C — — birth — birth K − L

D — — death — death K − L

E — death — death death L

F death — birth death birth L

Table 3: In the one function setting there are six cases in which the

addition of σi changes the kernel, the image, or the cokernel.
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σi ∈ L then Li = Li−1 ∪ {σi} else Li = Li−1. In Cases

B, E, F, the addition of σi changes the homology of Li−1,

which can only happen if σi ∈ L. In the remaining three

cases, the addition of σi changes the homology of Ki−1 but

not that of Li−1, which can only happen if σi ∈ K−L. Note

also that the change in the homology of Ki−1 is unambigu-

ous in all cases, that is, σi is positive in Cases B, C, F, and

negative in Cases A, D, E. We note that each death is paired

with a unique birth but some births remain unpaired until the

very end. It is convenient to rephrase the pairing condition

in a form that is most directly useful in the argument below.

We say a cycle appears in grp jl if the class it represents is

born at that group, where grp ∈ {ker , im , cok } as usual.

We note that the cycle might exist in the complex before it

appears in the group.

DEATH LEMMA. Let l < i be indices and z a cycle that

appears first in grp jl and is zero in grp ji. If there is no

index i′ < i for which there is a cycle that first appears in

grp jl and is zero in grp ji′ then the class represented by z is

born at grp jl and dies entering grp ji.

Next we consider the incidence matrices used to compute

the persistence diagrams of the sequences of kernels, images,

and cokernels. To simplify language, we let M [i] be the col-

umn of matrix M that corresponds to σi or, alternatively, the

set of simplices whose corresponding rows have a one in this

column. We will refer to it as column i ofM and note that in

some cases it is not the i-th column from the left, for example

when M = Rker .

OBSERVATION. Recall thatRf ,Rg ,Rker , Rim , Rcok are

the reduced incidence matrices computed by the algorithms

in Section 3.

(i) If Rg[i] = 0 then Rf [i] = 0.

(ii) Rf [i] = 0 iff Rim [i] = 0.

(iii) If σi ∈ L and Rf [i] 6= 0 then the lowest one in Rim [i]
corresponds to a simplex in L.

(iv) The columns of Rker are all non-zero.

(v) If σi ∈ K − L then the lowest one in Rker [i] corre-

sponds to σi.

(vi) If σi ∈ L, Rg[i] 6= 0, and Rf [i] = 0 then the lowest

one in Rker [i] corresponds to a simplex in K − L.

PROOF. Except for added zeros the columns of a simplex

in L are the same in Dg and in Df . This implies (i). The

reordering of rows does not change the rank of the matrix.

This implies (ii). By Observation (i), Rg[i] 6= 0 follows

from σi ∈ L and Rf [i] 6= 0. Since the columns of σi in

Dg and Dim are the same, except for added zeros as be-

fore, the lowest one in Rim [i] cannot be lower than that in

Rg[i]. This implies (iii). The matrix Vim is upper triangular

with a diagonal of ones. It thus has full rank and so does

Dker which consists of a subset of the columns in Vim . This

implies (iv). We get Dker from this subset of columns by

reordering the rows, moving simplices in L up and simplices

in K − L down. The reordering maintains the relative order

of the simplices in K − L. This implies (v).

Finally, we prove (vi) by contradiction, assuming the low-

est one in Rker [i] corresponds to a simplex σl ∈ L. Since

Rf [i] = 0 we have Rim = 0. It follows that column i of

Vim is part of Dker , after reordering the rows. Because of

the upper triangular structure of Vim , the diagonal ones may

be moved by the reordering but they are not cancelled in the

reduction. By assumption, the lowest one in Rker [i] corre-

sponds to a simplex in L which can therefore only be σi, that

is, l = i. But thenRker [i] stores a cycle in L, a contradiction

to Rg[i] 6= 0.

Inductive step. We assume inductively that the actual and

the computed sets of births, deaths, and pairs are the same

up to index i− 1. This is clearly true for i− 1 = 0, when all

sets are empty.

Necessity. Using this as the induction hypothesis, we

first show that the computed sets of births, deaths, and pairs

are subsets of the corresponding actual sets up to index i.

Images. The algorithm for the images reports a birth for the

new simplex iff σi ∈ L and Rg[i] = 0. In this case, Vg[i]
stores a cycle that represents a new class in the homology

group of Li as well as in im ji. Hence, σi gives rise to an

actual birth in the sequence of images.

The algorithm reports a death iffRf [i] 6= 0 and the lowest

one in Rim [i] corresponds to a simplex σl ∈ L. The reduced

column is a sum of boundaries in Ki,

Rim [i] =
∑

σk∈Vim [i]

Dim [k].

This cycle first appears in im jl and it is zero in Ki and

therefore also in im ji. Furthermore, there is no i′ < i for

which there is a chain that first appears in im jl and is zero

in im ji′ . Otherwise, (σl, σi′ ) would be a pair and the lowest

one in Rim [i′] would correspond to σl, by inductive hypoth-

esis. But thenRim could be reduced further, a contradiction.

By the Death Lemma, σi gives rise to an actual death and

(σl, σi) is an actual pair in the sequence of images.

Cokernels. The algorithm for the cokernels reports a birth

iff Rf [i] = 0 and either σi ∈ K − L or else σi ∈ L and

Rg[i] 6= 0. In this case, we have indeed a new class in the

cokernel, namely the one represented by Vf [i].
The algorithm reports a death iff Rf [i] 6= 0 and the low-

est one in Rim [i] corresponds to a simplex in K − L. By

Observation (iii), this implies σi ∈ K − L. Letting σl cor-

respond to the lowest one in Rcok [i], the algorithm reports

(σl, σi) as a pair. In this case, the reduced column is a sum

of boundaries in Ki and cycles in Li,

Rcok [i] =
∑

σk∈Vcok [i]

Dcok [k].
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This cycle appears first in cok jl and it is zero in Ki and

therefore also in cok ji. Furthermore, there is no index i′ < i
for which there is a chain that first appears in cok jl and is

zero in cok ji′ . As before, we use induction and the fact that

Rcok is reduced to prove this claim. By the Death Lemma,

σi gives rise to an actual death and (σl, σi) is an actual pair

in the sequence of cokernels.

Kernels. The algorithm for the kernels reports a birth iff σi ∈
K−L, Rf [i] 6= 0, and the lowest one in Rim [i] corresponds

to a simplex in L. In this case, Rim [i] is a cycle in L and

Vim [i] is a chain whose boundary is this cycle. Furthermore,

i is the smallest index for which such a chain exists, else we

could use induction to show thatRim can be further reduced.

Since σi belongs to Vim [i], this chain does not belong to L.

Hence, Rim [i] represents a class in the kernel and σi gives

rise to an actual birth.

The algorithm reports a death iff σi ∈ L, Rg[i] 6= 0, and

Rf [i] = 0. By Observation (vi), the lowest one in Rker [i]
corresponds to a simplex σl ∈ K−L. The algorithm reports

(σl, σi) as a pair. To prove that there is an actual death, we

recall that the columns in Dker are cycles in K . We write

each cycle as a sum of two chains, one in L and the other

in its complement, Dker [k] =
∑
λℓ +

∑
κℓ, where the λℓ

belong toL and the κℓ belong toK−L. The two chains share

their boundary, which we denote as zk = ∂
∑
λℓ = ∂

∑
κℓ.

Clearly, zk is a cycle in L. Because it bounds the sum of the

κℓ, the cycle belongs to the kernel, and because it bounds the

sum of the λℓ, the cycle is zero in L and therefore also zero

in the kernel. Consider the cycle

z =
∑

σk∈Vker [i]

zk.

We claim that the class it represents in the kernel is born at

ker jl. Indeed, if it were born earlier there would be l′ <
l and a chain c ∈ Kl′ whose boundary is z. But then σl

would be positive and by Observation (v) it would be the

lowest one of its own column and not that of column i. Now,

Vker [i] provides the sum we need to finish the proof using the

Death Lemma. As before, we use the induction hypothesis

and the fact that Rker is reduced to conclude that there is no

index i′ < i for which a cycle appears in ker jl and is zero

in ker ji′ . Therefore, σi gives rise to an actual death and

(σl, σi) is an actual pair in the sequence of kernels.

Sufficiency. We second show that the algorithms are

complete, that is, the actual births, deaths, and pairs are sub-

sets of the corresponding computed sets. Since there is a bi-

jection between the deaths and the pairs, it suffices to prove

the containments for the births and the deaths. We use Table

3 to do this by exhaustive case analysis.

Case 1 σi ∈ K − L.

Case 1.1 Rf [i] = 0. This is Case C in Table 3. The

only change is a birth in the cokernel and this is

correctly reported by the algorithms.

Case 1.2 Rf [i] 6= 0. Let σl correspond to the lowest

one in Rim [i].

Case 1.2.1 σl ∈ K − L. From the above analy-

sis we know that this corresponds to a death

in the cokernel. This is Case D in Table 3.

There are no other changes and this is cor-

rectly reported by the algorithms.

Case 1.2.2 σl ∈ L. From the above analysis we

know that this corresponds to a birth in the

kernel and a death in the image. This is Case

A in Table 3. There are no other changes and

this is correctly reported by the algorithms.

Case 2 σi ∈ L.

Case 2.1 Rf [i] = 0.

Case 2.1.1 Rg[i] 6= 0. This is Case F in Table

3. There is a death in the kernel, a birth in

the cokernel, and no change in the image, and

this is correctly reported by the algorithms.

Case 2.1.2 Rg[i] = 0. This is Case B in Table 3.

The only change is a birth in the image and

this is correctly reported by the algorithms.

Case 2.2 Rf [i] 6= 0. By Observation (i), this implies

Rg[i] 6= 0. This is Case E in Table 3. The only

change is a death in the image which is correctly

reported by the algorithms.

We conclude that the actual births and deaths are subsets of

the computed births and deaths, and similarly that the actual

pairs are a subset of the computed pairs.

We now have the containment relations in both directions

which implies that corresponding sets of computed and ac-

tual births, deaths, and pairs are in fact the same. This con-

cludes the proof that the algorithms in Section 3 correctly

compute the persistence diagrams of the sequences of ker-

nels, images, and cokernels.

5 Applications

In this section, we use kernels to measure local homology

and images to approximate persistence diagrams of noisy

functions specified on noisy domains. There are additional

applications that are sufficiently straightforward that we can

leave the details to the interested reader. One is the denois-

ing of alpha-beta witness complexes as introduced in [1]; see

also [9]. By considering maps from one complex to another,

more tolerantly constructed complex we can preserve per-

sistent features without accidentally introducing new ones.

By varying the scale parameter, α, we thus get a persis-

tence diagram that is less noisy then the diagram of the se-

quence of complexes for fixed tolerance parameter β. An-

other application is the computation of rank invariants for a

doubly-filtered space Xi,k as considered in [3]. Here we get

a simple algorithm by encoding the ranks of the images of
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Hp(Xi,k) → Hp(Xi′,k′), for fixed i < i′ and variable k < k′,
in a single persistence diagram of the images of the maps

Hp(Xi,k) → Hp(Xi′,k). We can compute all such diagrams

in time quartic in the number of simplices in the triangulation

of X.

5.1 Local Homology

We begin with the application of kernels to measuring the

local homology of a space in R
n at a point not necessarily

in the space. Following earlier work, we assume that the

space is not known other then indirectly through a finite set

of points sampled in or near the space.

Measuring local homology. Bendich et al. study the re-

construction of a stratified space S from a finite point sam-

ple U in R
n [2]. Specifically, they use persistence to define

a multi-scale version of the local homology of S at a point

z ∈ R
n. Let Sα be the sets of points at Euclidean distance

at most α from S, S
α the set of points at distance at least α

from S, andBr the closed ball of radius r centered at z. They

express the homology within a fixed distance r of z in terms

of the persistence diagram of the sequence

0 → H(Sα ∩Br) → . . .→ H(Br)

→ H(Br, S
α ∩Br) → . . .→ 0, (1)

where α first goes up, from 0 to ∞, and then down, from ∞
to 0. The first half of the sequence captures the development

of the absolute homology of Sα within Br, and it can be

shown that the second half captures the development of the

relative homology of Sα within the pair (Br, ∂Br). We note

that cycles that lie entirely inside the ball are captured twice,

once in each half. Finally, Bendich et al. vary r from 0 to

∞ and this way obtain a vineyard that expresses the local

homology of S at z under the 2-parameter variation of α and

r. They also prove relationships between this vineyard and

the similarly defined vineyard of a finite set of points U ⊆
R

n sampled near S.

In this paper, we propose to substitute a sequence of ker-

nels for (1). Specifically, let X = Br, Y = ∂Br, and let

f : X → R, g : Y → R map each point to its Euclidean dis-

tance from S. For each value αwe write Xα = f−1(−∞, α],
Yα = g−1(−∞, α] and let jα : H(Yα) → H(Xα) be the

map induced by the inclusion Yα ⊆ Xα. Assuming f and g
are both tame we have a finite set of critical values and thus

a finite sequence of kernels,

Ker(g→f) : ker j0 → ker j1 → . . .→ ker jm, (2)

which traces the evolution of the relative homology classes

in (1) that have a non-zero boundary in Y = ∂Br. The Sta-

bility Theorem in Section 2 implies that varying r from 0 to

∞ gives a vineyard. It tracks a homology class as long as the

boundary of the ball with radius r intersects all its represen-

tatives. The interval of radii expresses relevant size informa-

tion, namely how far away from z the class starts and ends.

It is thus no longer necessary to include absolute homology

classes in the measurement and the vineyard simplifies into

a form that more closely reflects the shape of the space in

the neighborhood of the point z; see Figure 6. Relationships

Birth
Death

R
ad

iu
s

Birth
Death

R
ad

iu
s

z

Figure 6: The vineyard of the chain of loops defined using the se-

quence (1) on the left and the sequence (2) of kernels on the right.

To compare the two diagrams we see that the kernel sequence re-

flects the left half of the left vineyard across the diagonal plane and

corrects for the removed absolute homology groups.

between the vineyard of S and that of a finite point sample

U ⊆ R
n similar to the Local Homology Inference and the

Inverse LHI Theorems in [2] can be proved using the same

methods. Details are omitted.

Computing local homology. Following the prior work, we

use the Delaunay triangulations of U restricted to the ball

Br and to the ball without the interior of the power cell of

the point z, Z0(r) = Br − intZ(r); see [2, Section 6]

for details. We use distance functions and Delaunay trian-

gulations for clear and solid theoretical footing. For prac-

tical high-dimensional implementations, like [2], these re-

sults need to be extended to Vietoris-Rips [12] and Witness

complexes [9]. Let Kα = Del(U |Uα ∩Br) and Lα =
Del(U |Uα ∩ Z0(r)) be the Delaunay triangulations that are

further restricted to the set of points at distance at most α
from U . Let furthermore

iα : H(Uα ∩ Z0(r)) → H(Uα ∩Br);

lα : H(Lα) → H(Kα)

be the maps between the homology groups induced by in-

clusion. To justify the use of the restricted Delaunay trian-

gulations, we need to show that the persistence diagrams of

the kernels of these maps are the same. This requires that

the following diagram is well-defined, commutative, and its
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vertical maps are isomorphisms whenever α ≤ α′:

ker jα → ker jα′

↓ iα ↓ iα′

ker iα → ker iα′

↑ hα ↑ hα′

ker lα → ker lα′ .

Consider the following diagram whose maps are all induced

by inclusions except for the lower vertical maps which are

motivated by the Nerve Subdivision Lemma [2, Section 8].

H(Uα ∩ ∂Br)
jα
→ H(Uα ∩Br)

↓ ↓

H(Uα ∩ Z0(r))
iα→ H(Uα ∩Br)

↑ ↑

H(Lα)
lα→ H(Kα).

The top square commutes. The bottom square also com-

mutes since the horizontal maps are induced by inclusion and

the vertical map for Lα is the restriction of the one for Kα.

Therefore the kernel diagram is well-defined. Since the ker-

nels are subgroups of the domains of their defining maps, the

kernel diagram is a restriction of a diagram considered in [2,

Section 8]. The analysis there implies that it commutes and

its vertical maps are isomorphisms, as required.

The Stability Theorem of Section 2 implies that the kernel

persistence diagrams change continuously with the radius of

the restricted ball Br. We construct the implied vineyard by

maintaining the ordering of the simplices and the reduced

matrices. However, unlike with relative homology in [2] we

cannot use excision to maintain different orderings of a static

complex. We need to be able to handle insertion of sim-

plices into the ordering when the power cell of the point z
expands with r to include new simplices. Fortunately, the

new simplices are paired amongst each other so that these

updates can be done in linear time per insertion. Once a sim-

plex is inserted, its position in the ordering can be described

by a continuous function; see Appendices A and B of [2].

It therefore suffices to maintain the decompositions in the

four steps of the algorithm under transpositions of contigu-

ous simplices. Details on how to perform these operations

are given in Appendix A.

5.2 Noisy Domains

Persistent homology has proven to be well-suited for dealing

with noisy functions. Indeed, the stability of persistence di-

agrams implies that the topological features of an unknown

ideal function f̃ : X → R can be approximately recovered

knowing only a noisy approximation f of f̃ . We claim that

the persistence for images can be used to furthermore filter

out the topological noise induced by the domain itself.

Stability. We assume an unknown ideal domain given as

the zero sublevel set of the unknown ideal function h̃ : R
n →

R, that is, X̃ = h̃−1(−∞, 0]. On this domain we con-

sider another unknown ideal function but because we will

vary the domain we assume it is defined on the entire am-

bient space, f̃ : R
n → R. Can we estimate the persis-

tence diagram of the restriction f̃ |
X̃

: X̃ → R knowing

only noisy approximations h, f of h̃, f̃? We give an af-

firmative answer under mild requirements on the functions.

To describe these requirements we use superscripts for sub-

level sets of h and h̃ and subscripts for sublevel sets of f
and f̃ , that is, X

u = h−1(−∞, u], Xa = f−1(−∞, a],
X

u
a = Xa ∩ X

u and similarly for X̃
u, X̃a, X̃

u
a . Writing

ε = ‖h− h̃‖∞ we require that h̃ is smooth and the norm

of its gradient is bounded away from 0 where this is rele-

vant, that is, ‖∇h̃‖ ≥ µ > 0 on X̃
2ε − X̃

−2ε. Further-

more, we write δ = ‖f − f̃‖∞ and require that f is Lips-

chitz with constant κ, that is, |f(x) − f(y)| ≤ κ‖x− y‖ for

all x, y ∈ R
n.

We note that the requirement on h̃ implies a homotopy

between the identity on X̃
2ε and a retraction ̺ from X̃

2ε to

X̃
0. To construct the homotopy we consider the integral lines

of the vector field −∇h̃ starting at points x ∈ X̃
2ε. Let

̺(x) be the first point on the curve starting at x that satisfies

h̃(̺(x)) = h̃(x)− 2ε or h̃(̺(x)) ≤ −2ε. In words, ̺ moves

the fringe outside the boundary of X̃ to the fringe inside that

boundary and it moves the fringe inside that boundary to the

boundary of X̃
−2ε. Since the gradient has norm no smaller

than µ > 0 along the integral line, the retraction ̺ : X̃
2ε →

X̃
2ε is well defined. By construction, there is a homotopy

between the identity on X̃
2ε and ̺ that moves points by at

most 2ε/µ. We are now ready to state our result.

STABILITY THEOREM FOR NOISY DOMAINS. Let

h, h̃ : R
n → R with ε = ‖h− h̃‖∞, h̃ smooth, and

the norm of the gradient satisfying ‖∇h̃‖ ≥ µ > 0 on

X̃
2ε − X̃

−2ε. Furthermore, let f, f̃ : R
n → R with

δ = ‖f − f̃‖∞ and f Lipschitz with constant κ. Then

dB(Dgm(f̃ |
X̃
),Dgm(im f |X−ε →f |Xε)) ≤ 2κε/µ+ δ

provided the restrictions of f̃ to X̃ and of f to X̃, X
ε, X

−ε

are continuous and tame and there exists a triangulation of

X
ε in which X

−ε and X̃ arise as subcomplexes.

PROOF. By the Stability Theorem for ordinary persistence

we have dB(Dgm(f̃ |
X̃
),Dgm(f |

X̃
)) ≤ δ. It remains to

show that the bottleneck distance between Dgm(f |
X̃
) and

Dgm(im f |X−ε →f |Xε) is bounded from above by c =
2κε/µ.

10



Writing Fa for H(X̃0
a), the diagrams Dgm(f |

X̃
) is ob-

tained from the sequence formed by the maps Fa → Fb

induced by the inclusion X̃
0
a ⊆ X̃

0
b for all a ≤ b. Simi-

larly, writing Ja for the image of the map H(X−ε
a ) → H(Xε

a),
the diagram Dgm(im f |X−ε →f |Xε) is obtained from the se-

quence of maps Ja → Jb again induced by inclusion and for

all a ≤ b. To adapt the proof of stability given in [6], we need

to connect these two sequences by maps φa : Fa−c → Ja

and ψa : Ja−c → Fa, for all a ∈ R, in such a way

that the diagram formed by the two sequences together with

the new maps commutes. We construct the new maps us-

H(X̃0
a−c)

H(X̃−2ε
a ) H(X−ε

a ) H(X̃0
a) H(Xε

a) H(X̃2ε
a )

H(X̃0
a+c)

ttjjjjjjjjjjjj ��// // //�� //ttjjjjjjjjjjjjj
Figure 7: The diagram used to define the maps φa and ψa. The

sequence Fa−c → Fa → Fa+c is drawn vertically from top to

bottom and Ja can be seen as the image of the composition of two

horizontal maps. All maps except for the diagonal ones are induced

by inclusion.

ing the homotopy between the identity and the retraction

̺ : X̃
2ε → X̃

2ε. As mentioned earlier, the homotopy moves a

point by at most 2ε/µ and since f is Lipschitz with constant

κ, ̺ maps X̃
0
a−c to X̃

−2ε
a which is included in X

−ε
a . The in-

duced homomorphism from H(X̃0
a−c) to H(X−ε

a ) composed

with the induced homomorphism from H(X−ε
a ) to H(Xε

a)
gives the map φa. As shown in Figure 7, φa connects the

two sequences with a shift of c = 2κε/µ. By a similar pro-

cess, we construct the map ψa connecting the two sequences

of vector spaces in the other direction and again with a shift

of c. Because ̺ is homotopic to the identity, the diagram

formed by the two sequences and the maps φa and ψa com-

mutes. The remainder of the proof can be adapted directly

from [6].

Diagram approximation. An interesting case of the above

theorem arises when we consider a finite set of points, U ,

sampling an unknown shape, S ⊆ R
n. Let h̃ : R

n → R be

the distance function of S, that is, h̃(x) = infy∈S ‖x− y‖.

Similarly, let h : R
n → R be the distance function of U

and set ε to the Hausdorff distance between S and U . For

technical reasons we may have to replace h̃ by a smooth ap-

proximation, for example obtained by convolution with an

infinitesimally narrow Gaussian so that the assumptions in

the theorem are satisfied. In this setting, the requirement that

the norm of the gradient of h̃ is bounded from below by µ is

equivalent to the µ-reach of S exceeding 4ε. Here we recall

that the µ-reach as recently introduced in [4] is a notion of

feature size that permits the treatment of non-smooth objects.

Under this assumption, the Stability Theorem for Noisy Do-

mains implies that it is possible to estimate the persistence

diagram of a function f̃ restricted to the 2ε-offset of S know-

ing only a Lipschitz function f that approximates f̃ and the

point set U that samples S.

To approximate the persistence diagram of f̃ restricted to

S itself, we exploit the existence of an isotopy ι from S
2ε to

an arbitrarily small offset S
η of the shape such that the points

move by less than 2ε/µ during the deformation. The con-

struction of ι is similar to the construction of the homotopy

between the identity and ̺ described above. The isotopy im-

plies that Dgm(f |S2ε) equals Dgm(f ◦ ι−1|Sη ) which in turn

is c-close to Dgm(f |Sη ) by stability. Hence, the latter dia-

gram can also be estimated from f and U with an accuracy

of 2c. Perhaps surprisingly, Dgm(f |Sη ) may not converge to

Dgm(f |S) as η goes to 0; see [5] for examples of shapes S

that lack this convergence property. However, convergence

holds for sufficiently regular spaces S, such as smooth sub-

manifolds or geometrically realized simplicial complexes. In

these cases we can estimate Dgm(f |S) with precision 2c.

In the more realistic case in which f is only known at a

finite set of points, U , a valid approach replaces f by the

function f̄ that is constant on the Voronoi cells of the points

and coincides with f on U . While f̄ is not continuous, it is

almost everywhere continuous in a way that does not disrupt

the proof of stability. Furthermore, f and f̄ differ by at most

4κε on h̃−1(−∞, 4ε]. By the Stability Theorem for Noisy

Domains, the persistence diagrams of the images defined by

f and f̄ are close. The diagram for f̄ can be computed using

the alpha shape filtration of U . We thus get a practical al-

gorithm for estimating the persistence diagram of functions

given only at a finite set of points.

6 Discussion

In this paper, we consider persistent homology for sequences

of kernels, images, and cokernels defined by a pair of topo-

logical spaces, Y ⊆ X, and two functions, f : X → R and

g : Y → R, with f(y) ≤ g(y) for every y ∈ Y. Since g ma-

jorizes the restriction of f to Y, its sublevel sets are contained

in those of f , Ya = g−1(−∞, a] ⊆ Xa = f−1(−∞, a], and

we have homomorphisms ja : H(Ya) → H(Xa) induced by

the inclusions. To see that persistent homology is well de-

fined we just need to note that the diagrams

H(Xa) → H(Xb)

↑ ja ↑ jb

H(Ya) → H(Yb)

commute for any a ≤ b and thus induce homomorphic maps

ker ja → ker jb, im ja → im jb, and cok ja → cok jb.
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It is worth noting that the mapping cylinder construction

described in Section 2 can be used to extend the framework

from inclusion Y ⊆ X to an arbitrary continuous map j :
Y → X. If we have two functions f : X → R, and g :
Y → R, such that j(Ya) ⊆ Xa with the sublevel set of each

space taken with respect to its own map, then the maps ja :
Ya → Xa between the sublevel sets induce homomorphisms

on homology groups just the same. Constructing a mapping

cylinder X
′ = X∪Y× [0, 1] by identifying (y, 0) ∈ Y×{0}

with j(y) ∈ X, it is easy to verify that the sequences of

kernels, images, and cokernels induced by inclusion Ya =
Ya × {1} ⊆ X

′
a give the same persistence pairing as the

three sequences induced by the continuous maps ja defined

above.

One can also extend the framework described in this pa-

per from spaces Ya ⊆ Xa to pairs of spaces (Ya,Ya0
) ⊆

(Xa,Xa0
) using the cone construction exploited for the com-

putation of extended persistence [7]. Indeed, observing that

the relative homology groups H(Ya,Ya0
) are isomorphic to

the homology groups of Ya with a cone on Ya0
rel the cone

point, i.e. H(Ya, Ya0
) ≃ H(Ya ∪ CYa0

, ω), we can compute

the persistence of kernels, images, and cokernels induced by

the inclusions of pairs of spaces by using the algorithms of

this paper on corresponding cones.

The mapping cylinder construction and the cone construc-

tion can be combined to cope with arbitrary continuous maps

between pairs of spaces rather than only inclusions.

The algorithms for computing the persistence diagrams of

the sequences of kernels, images, and cokernels are variants

of the classic Smith normal form algorithm; see [11, Chapter

1.11]. More directly, we build on the algorithm in [8] which

reduces the entire incidence matrix at once, paying careful

attention to the orderings of the rows and the columns which

are the same and consistent with the ordering of the sub-

level sets. The main difficulty in the new setting is that we

have two orderings, one for K triangulating X and the other

for L ⊆ K triangulating Y. We cope using the mapping

cylinder construction and matrices in which the rows are re-

ordered so that L precedes K − L. The resulting algorithms

run in time at most cubic in the size of K , same as the re-

duction algorithm in [8] as well as the classic Smith normal

form algorithm for modulo-2 arithmetic. The fact that a sim-

ple reordering of the rows does the trick suggests that there

may be other interesting pieces of information that can be

extracted from reduced reordered matrices. Does the pairing

defined by the lowest ones in a reduced incidence matrix in

which columns and rows are ordered independently and arbi-

trarily have an intuitive interpretation that carries topological

meaning?
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Appendix A

We consider the actions necessary to maintain the matrix de-

compositions under the transposition of two contiguous sim-

plices σi and σi+1. The maintenance of the R = DU de-

composition under such transpositions has been considered

in [8] and their algorithm applies directly to the maintenance

of Rf = DfVf and Rg = DgVg . However, maintaining the

other three decompositions is more difficult because Dker ,

Dim , and Dcok are not ordinary incidence matrices. The

algorithm in [8] expresses an update in terms of pre- and

post-multiplications by idempotent matrices. We observe

that multiplying V by the same matrices as R maintains the

equality R = DV as well as V U = I .

12



Step 2, the image. Consider first the maintenance of

Rim = DimVim which is made difficult by ordering the

rows and columns differently. We distinguish the case in

which σi and σi+1 both belong to L or to K − L from the

case in which one belongs to L and the other to K − L.

In the former case, we let P ′ be the transposition matrix of

the rows σi and σi+1, and in the latter case we set P ′ = I .

Now we can follow the case analysis in [8] replacing the pre-

multiplication ofDim andRim byP withP ′. The only other

adjustment that we must make is in Case 1 in [8], in which

both simplices σi and σi+1 are positive. Namely, we do not

need to check whether a collision is introduced in Rim by

the transposition of rows (Case 1.1 in [8]) if σi and σi+1 do

not belong to the same group, since in this case P ′ = I and

no rows transpose.

Step 3, the kernel. Consider second the maintenance of

Rker = DkerVker . Recall that the matrix Dker is obtained

from Vim by keeping only the columns of positive simplices

and reordering the rows. If both transposing simplices are

positive in Rker then their columns in Vker do not change.

Therefore, their columns in Dker and in Rker transpose as

well as both their rows and columns in Vker . If as a result

Vker ceases to be upper-triangular then we can perform an

update similar to Case 2.1 of [8] by adding the column of

σi to the column of σi+1 before the transposition. Using the

matrix Si+1
i for this operation, we get

P ′RkerS
i+1
i P = (P ′DkerP )(PVker S

i+1
i P ).

Observe that this operation may render Rker non-reduced

which can also happen as a result of a row transposition if σi

and σi+1 both belong toL or toK−L. IfRker becomes non-

reduced we can fix it by multiplying again by Si+1
i which

gives

P ′Rker S
i+1
i PSi+1

i = (P ′DkerP )(PVker S
i+1
i PSi+1

i ).

This update may result in a Type 2 switch in the pairing [8],

that is, both transposing simplices are responsible for deaths

of homology classes. If the two transposing simplices are

both negative then there are no columns exchanges in Dker ,

Rker , and Vker . However, the rows of Dker and Rker ex-

change if both σi and σi+1 are in L or in K−L. The former

case is easy because the transposing simplices do not con-

tain the lowest one in their rows. However, in the latter case,

similarly to Case 1.1 of [8], the matrix Rker may become

non-reduced. Denote by σl and σk (both in L) the simplices

in Rker that have in their columns the lowest ones in the po-

sitions of simplices σi and σi+1, respectively. We can reduce

Rker by adding the preceding column to the succeeding col-

umn. We thus obtain

P ′RkerS
k
l = (P ′Dker )(Vker S

k
l ) or

P ′RkerS
l
k = (P ′Dker )(Vker S

l
k).

If this update is necessary and k precedes l then we have a

Type 1 switch in the pairing [8], that is, both transposing sim-

plices are responsible for births of homology classes. If σi is

negative and σi+1 is positive in Rf , that is, we are in Case

3 of [8], then regardless of whether the pairing switches or

not, the columns of Dker remain the same. This observation

follows from the update rule in case the pairing switches.

This leaves the column of the negative simplex to be the sum

of the transposing columns while leaving the column of the

positive simplex intact. The rows of Dker transpose only if

σi and σi+1 are in L or inK−L. However, this transposition

has no effect since Dker [i, i+ 1] = Vker [i, i+ 1] = 1 if and

only if there is a switch in the pairing in Rker . As a result,

we have

P ′Rker = (P ′Dker )Vker .

If σi ∈ K − L, σi+1 ∈ L and the pairing switches then the

pair disappears from the kernel entirely: the column of Dker

that used to represent σi+1 ∈ L now represent the simplex

σi ∈ K − L. If σi is positive and σi+1 is negative then no

switches in the pairing may occur in Rker , so the only con-

cern is the row transposition inDker andRker if σi and σi+1

are both inL or inK−L. In the latter case, σi remains paired

with itself and is unaffected by the row transposition. In the

former case, σi+1 can never be the lowest one in a column of

Rker while σi can only be the lowest one in its own column,

which cannot contain σi+1. Therefore, no changes in pairing

are possible, and

P ′Rker = (P ′Dker )Vker

is a proper decomposition. We observe that a Type 3 switch

in the pairing never arises in the analysis of changes to the

decomposition in Step 3 of the algorithm. This is to be ex-

pected since the pairs in the kernel (image persistence is un-

affected by Step 3) are always between simplices of the same

dimension.

Step 4, the cokernel. Consider finally the maintenance

of Rcok = Dcok Vcok . For reasons that will become ap-

parent shortly, we switch to maintaining the decomposition

Dcok = RcokUcok , where Ucok = Vcok
−1. We might as

well since the matrix Vcok plays no role in the construc-

tion of the persistence diagrams. It is a curious property of

the algorithm in [8] maintaining D = RU (or equivalently

R = DV ) that the only time the columns of V correspond-

ing to positive simplices can change is in the preprocessing

step of Case 1, namely when σi and σi+1 are both positive in

R and V [i, i+ 1] = 1. Applied to the decomposition of Df ,

we add column Vg[i] to Vg[i+ 1] whenever this happens. To

offset the resulting change in Dcok , we add the row of σi+1

to the row of σi inUcok , noting that the two rows are not nec-

essarily adjacent. We can update Ucok in linear time while

the equivalent fix to Vcok would require a quadratic num-

ber of operations. The only remaining changes to Dcok are
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transpositions of rows and columns which we handle directly

using the algorithm in [8]. It follows that the maintenance of

the decomposition Dcok = RcokUcok takes linear time per

operation.
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