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Machine learning with persistent 
homology and chemical word 
embeddings improves prediction 
accuracy and interpretability 
in metal‑organic frameworks
Aditi S. Krishnapriyan1,2*, Joseph Montoya2, Maciej Haranczyk3, Jens Hummelshøj2 & 
Dmitriy Morozov1

Machine learning has emerged as a powerful approach in materials discovery. Its major challenge 
is selecting features that create interpretable representations of materials, useful across multiple 
prediction tasks. We introduce an end‑to‑end machine learning model that automatically generates 
descriptors that capture a complex representation of a material’s structure and chemistry. This 
approach builds on computational topology techniques (namely, persistent homology) and word 
embeddings from natural language processing. It automatically encapsulates geometric and chemical 
information directly from the material system. We demonstrate our approach on multiple nanoporous 
metal–organic framework datasets by predicting methane and carbon dioxide adsorption across 
different conditions. Our results show considerable improvement in both accuracy and transferability 
across targets compared to models constructed from the commonly‑used, manually‑curated features, 
consistently achieving an average 25–30% decrease in root‑mean‑squared‑deviation and an average 
increase of 40–50% in  R2 scores. A key advantage of our approach is interpretability: Our model 
identifies the pores that correlate best to adsorption at different pressures, which contributes to 
understanding atomic‑level structure–property relationships for materials design.

Metal–organic frameworks (MOFs) exhibit properties beneficial for a number of applications. Their porosity 
and large internal surface areas make them promising adsorbents for gas separation and storage; their diverse 
chemistry leads to their use as  catalysts1–3. The number of MOF structures is massive—there are thousands of 
experimentally synthesized structures, but also many more hypothesized ones—creating a need for efficient tools 
and approaches to quickly identify MOFs best suited for a given applications.

The properties defining the best MOFs are dependent on the application. For example, different gas adsorp-
tions have different applications: for example, adsorption of methane in the 65–5.8 bar range is relevant to 
on-board vehicular natural gas storage  technologies4, while adsorption of carbon dioxide at lower pressure is 
important for  CO2 capture from flue  gases5.

Molecular simulations have played an important role in the prediction of adsorption and diffusion behaviour 
of guest species in nanoporous materials. They have allowed computation of Henry’s coefficients, adsorption 
loadings and diffusion coefficients at various  conditions6. But a larger challenge remains: to advance our under-
standing of MOFs, it is necessary to recognize geometric and chemical features responsible for their performance 
in particular applications. These features offer useful clues for the design of new materials.

Machine learning offers a promising research direction to address this challenge. ML  techniques7,8 have been 
used to screen large databases of MOFs, and to predict their properties faster than molecular simulations. Fur-
thermore, feature representations developed for ML help identify correlations between MOF features and target 
properties. This makes it possible to relate input features to a MOF’s performance in a particular application. To 
do so effectively, one needs to find interpretable feature descriptors, whose values can be related to recognizable 
MOF  properties9–14. Additionally, the diversity of properties and the vast number of structures makes it especially 
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desirable to have an automatic framework to generate expressive features that work across multiple applications, 
enabling more transferability and less “handcrafting.”

Creating a universal representation from the input material structure, suitable for all different prediction tasks, 
is incredibly complicated. Typically, domain experts select specific features as the model input, usually tailored 
to making predictions about a particular property of interest. Often, this approach requires a large amount of 
manual processing to extract the necessary  features15. For example, in the case of gas adsorption at high pressure, 
guest molecules tend to occupy the entire void space in a material, so void fraction can be used in predictive 
models. In contrast, for gas adsorption at low pressures, the guest molecules aggregate in the strongly binding 
regions of the material’s pore—standard structural descriptors are not able to capture this information as well. 
Additionally, chemical interactions of the system, in particular local strong adsorption sites, are important in 
determining some gas adsorption properties; this information also needs to be encoded in material descriptors.

Besides geometry and topology, chemical makeup of the internal surfaces is key for predicting MOF proper-
ties. Chemistry is especially important for predicting adsorption capacities at low pressures. Previous approaches 
have constructed chemical descriptors by incorporating information from MOF building blocks, such as func-
tional  groups13,16,17. These approaches have resulted in some improvements in predictive capabilities, but they 
still require manual feature curation to inspect all of the building blocks in the dataset. Moreover, the prediction 
accuracy of these descriptors often does not transfer across structures and properties.

In this paper, we describe how to overcome the above challenges and present an end-to-end ML framework 
that automatically generates a material representation, while only requiring the basic material structure (atomic 
coordinates and elemental composition) as input. As a consequence, this approach avoids handcrafting repre-
sentations that do not transfer across property predictions. We use a topological descriptor, called persistent 
 homology18, to compute multi-scale signatures of the channels and voids in the pores of the material. There have 
been previous approaches applying topological data analysis to  materials19,20; however, in this work, we show 
that descriptors can be constructed from topological data analysis for downstream machine learning tasks for 
materials.

Additionally, we use features built using word embedding  techniques21 to describe chemical information. As 
we demonstrate, this automated ML framework beats the standard structural descriptors in predicting a variety 
of materials properties. We also show that the overall methodology—coupling these features with ML algorithms 
that assign importances—opens the proverbial ML black box and allows us to interpret the predictions by iden-
tifying geometric and chemical properties relevant to different tasks.

Methods
Datasets. We demonstrate our approaches on three datasets corresponding to MOFs of various diversity, and 
across a range of  CH4 and  CO2 uptake pressures predicted using grand cannonical Monte Carlo  simulations22–24. 
The first dataset is the hypothetical MOFs (hMOFs) database generated by Wilmer et al.22. The hMOF structures 
were taken from MOFDB (http:// hmofs. north weste rn. edu), which also has adsorption uptakes for carbon diox-
ide at five different pressures ranging from 0.05 bar to 2.5 bar.

The second dataset is the Boyd–Woo predicted MOF  database23 with the predicted methane and carbon 
dioxide adsorption capacities at low and high pressure, and methane and carbon dioxide Henry’s coefficients. 
The Henry’s coefficients are expressed in terms of their logarithms.

Finally, we also included the 2019 CoREMOF dataset of the experimentally synthesized  MOFs24.
For each structure in our dataset, as in our previous  work25, we have determined the values of the follow-

ing commonly–used geometric descriptors. We call these structural descriptors, and use them as a baseline to 
compare against topological descriptors: 

(a) pore limiting diameter (PLD), in (Å), the diameter of the largest sphere to percolate through a material;
(b) largest cavity diameter (LCD), in (Å), the diameter of the largest sphere than can fit inside the material’s 

pore system;
(c) crystal density ( ρ ), in (kg/m3);
(d) accessible volume (AV), in  (cm3/g);
(e) accessible surface area (ASA), in  (m2/cm3).

The values for these descriptors were computed using the Zeo++ software  package26.

Automated topology–processing pipeline. We construct an automated pipeline to process an input 
MOF. We describe the topological structure of the MOFs using persistent homology18. To normalize the size of 
each MOF, expressed as (periodic) base cells of different sizes, we fill a (100 Å)3 cell with the atoms of the MOF. 
The size is chosen to be large enough to capture the statistics of the distribution of the topological features in 
every structure.

We represent a MOF as a union of hard spheres centered on its atoms. We increase the radii of these spheres 
and keep track of the changes in the topology of their union. The changes come in two types: a topological feature, 
such as a loop or a void, either appears or disappears. An important consequence of the algebraic formulation 
of this process is that these events can be paired uniquely, resulting in a set of birth–death pairs of radii, called 
a persistence diagram; see Fig. 1. There are two persistence diagrams relevant to us: a diagram that tracks births 
and deaths of loops that we interpret as tunnels in the MOF (we call these 1-dimensional features), and a diagram 
that tracks voids that we think of as pockets in the MOF (2-dimensional features). The difference in birth–death 
values is called persistence of the pair. Pairs of larger persistence capture more prominent pores in the MOF. We 
compute persistence diagrams using the Dionysus library (https:// github. com/ mrzv/ diony sus).

http://hmofs.northwestern.edu
https://github.com/mrzv/dionysus
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Persistence diagrams are translated into vectors suitable as input for machine learning algorithms via a modi-
fication of persistence images, introduced by Adams et al.27. The birth–death pairs (b, d) are transformed into 
birth–persistence pairs (b, d − b) . They are then convolved with Gaussians and discretized onto a grid of a fixed 
size, by integrating the resulting mixture of Gaussians in the cells of the grid. For this, we use the resolution of 
50× 50 and a Gaussian spread of σ = 0.15.

Word embeddings. We incorporate word embeddings of the chemical elements to represent a given MOF’s 
stoichiometric formula into our automated pipeline. We use this to capture the MOF’s chemical information. 
The chosen embeddings were constructed from a large corpus of abstracts with the word2vec  algorithm21. The 
only input required is the elemental composition of the MOFs. Using word embeddings maintains the auto-
mated nature of our machine learning pipeline. While the use of word embeddings to featurize composition do 
represent an implicit knowledge that the chemical elements are distinct, they use no explicit element-specific 
properties and are themselves derived from an unsupervised learning procedure on raw text. From an input 
MOF structure, we construct features based on the composition of each MOF structure that represent word 
embeddings for the different elements in the MOF using the “matscholar_el” preset ElementProperty featurizer 
in  matminer28. The features correspond to 200 embedding dimensions, with the minimum, maximum, range, 
mean, and standard deviation for each dimension, for a total of 1000 values. We note that the different datasets 
have different numbers of unique elements. For example, the hMOF dataset has eight, while the BW dataset has 
16.

Machine learning. We use random  forest29 regression to predict carbon dioxide and methane adsorption 
uptakes at different pressures including infinite dilution (the Henry’s coefficients). One of our motivations for 
using the random forest is the ability to determine the feature importances in the model. The random forest algo-
rithm builds an ensemble of decision trees and chooses a random subset of features for each one. The frequency 
with which a particular feature is chosen for a split is an estimate for the importance of the said feature.

We build trees for different groups of features: topological features, standard structural features, word embed-
dings, a combined model of topological features and word embeddings, a combined model of topological and 
structural features, and a combined model of topological features, structural features, and word embeddings. 
The topological features consist of both the 1D and 2D persistence images. We train the random forest on the 
specific target prediction of each material. Each of the forests consists of 500 trees, and the final prediction is the 
average of the prediction of all trees in the forest. After training the random forest on a training set, predictions 
are made on an unseen test set. For most of the predictions, we use an 80%/20% training-test split. The quality 
of the prediction is evaluated by comparing the predicted adsorption values and the correct adsorption values. 
We quantify our predictions by computing the root-mean-square deviation, 

√

∑

(ŷi − yi)2/n , and the coefficient 
of determination  (R2), 1−

∑

(yi − ŷi)
2)/

∑

(yi − ȳ)2 . We also note that there are other approaches to utilize 
persistence diagrams in machine learning algorithms, such as by directly processing the diagrams through an 
input persistence layer in a neural  network30.

Interpretability and representative cycles. The algorithm used to compute  persistence31 tracks cycles 
that represent the topological features summarized in the persistence diagram. The cycles are not unique, but 
they reveal the atomic structures responsible for particular birth–death pairs. In a crystal structure, representa-
tive cycles correspond to channels or voids in the material. We visualize the cycles to better understand the topo-
logical features that appear in the MOFs. We choose which cycle to visualize using the feature importances found 
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Figure 1.  Schematic outlining point cloud to persistence diagram. (left) A point set (representing atomic 
centers) with balls of increasing radius around the points, (right) 1-dimensional persistence diagram of the point 
set. Representative cycles, corresponding to the points in the diagram, are highlighted with matching colors. The 
larger the loop, the higher the persistence value ( death− birth ). Figure created with Ipe 7.2.23 (http:// ipe. otfri 
ed. org/).

http://ipe.otfried.org/
http://ipe.otfried.org/
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by the machine learning algorithms. We compute the representative cycles using the aforementioned Dionysus 
and visualize them with Zeo++ and VisIt.

Results
We evaluate the accuracy of the automatically generated descriptors for our machine learning models by predict-
ing a number of different targets across the different datasets. For each target, we calculate the root-mean-square 
deviation (RMSD) and coefficient of determination  (R2 score). For each target and each dataset, we include results 
from models trained on only the topological features, only the word embeddings, and both the topological fea-
tures and the word embeddings (T + WE). We also include results from the structural descriptors, described in 
Section “Datasets”, as a baseline. Finally, we incorporate the standard structural descriptors by including models 
combining topological and structural descriptors (T + S), as well as topological descriptors, structural descrip-
tors, and word embeddings (T + S + WE).

hMOF dataset. For the hMOF dataset, we predict carbon dioxide adsorption capacities at different pres-
sures, as shown in Fig. 2. The RMSD is low at lower pressures because the distribution of carbon dioxide adsorp-
tion capacity has low variance in this regime. While the topology-based model outperforms the word embed-
dings, the model combining the two performs even better. We also see that the topological features always 
outperform the structural features, often significantly. The word embeddings do not perform as well here. This 
is likely due to the hMOF dataset lacking compositional diversity: the hMOF data set contains only eight unique 
elements. Nevertheless, word embeddings help boost the overall model performance when combined with the 
topological features.

We achieve the best performance by combining all three features together, but the accuracy achieved by sub-
sets of the features is revealing. Adding structural to topological features slightly improves the performance, but 
doesn’t match that of all three features combined. On the other hand, the T + WE model performs only slightly 
worse than the T + S + WE model, indicating that the topological features capture most of the information that 
the structural features provide.

We compare our results to Fanourgakis et al.11, who used standard structural features and a customized fea-
turization based on atom types to predict  CO2 adsorption capacity in the hMOF dataset. Table 1 shows results 
for each of our models at different pressures, along with the best model from Fanourgakis et al11.

Our model does particularly well at low pressures, achieving an  R2 score of 0.86 at 0.05 bar, compared to 0.65 
 from11. Carbon dioxide adsorption at low pressure has an important application: carbon capture from flue gases. 
Thus, it is particularly promising to have a generalized framework for accurate prediction of these targets. In 
general, our model transfers well across different pressures, as demonstrated by consistently high performance.

BW dataset. We evaluate the accuracy of the automated machine learning pipeline on the BW dataset. We 
predict six targets grouped into three categories: the Henry’s coefficient (log(KH )) for  CO2 and  CH4, the gas 
uptakes for  CO2 at 0.15 and 16 bar, and the gas uptakes for  CH4 at 5.8 and 65 bar.
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Figure 2.  Model performances for hMOF dataset and  CO2 adsorption. Comparison of root-mean-square 
deviation (left), coefficient of determination (right) in predicting gas uptakes in  CO2 for different features 
at different pressures for the hMOF dataset. The RMSD is low at lower pressures because the distribution 
of carbon dioxide adsorption capacity has low variance in this regime. The topological features consistently 
outperform the standard structural features at all pressures. The T + WE and T + S + WE models achieve the 
best performance in general.
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Table 2 shows the results of these predictions for the BW dataset for the baseline structural features (S), 
topological features (T), and topological features + word embeddings (T + WE). As a general trend, the T + WE 
model outperforms the structural features by a large amount, with an average (across all targets) decrease of 
25.2% in RMSD and an average increase of 26.6% in R 2 score. This is especially apparent for the Henry’s coef-
ficient predictions and the CO2 and CH4 gas uptakes at low pressure. For these low pressure and infinite dilution 
gas adsorption predictions, to our knowledge, these topological descriptors are currently the best-performing 
descriptors that only take into account geometric information about the MOF. Supplementary Fig. 1 shows 
further visualization of the results with different sets of features.

CoREMOF dataset. Finally, we evaluate the accuracy of the automated ML pipeline on the CoREMOF 
dataset. To narrow the dataset in a principled manner, we only include MOFs with a known topology  net32, 
with each topology net appearing at least 15 times in the dataset for a total of approximately 50 topology nets in 
the whole dataset. We predict four targets here: the Henry’s coefficient (log(KH )) for CO2 and CH4 and the gas 
uptakes for CH4 at 5.8 and 65 bar.

The improvement in using our ML framework in contrast to the commonly used structural features is par-
ticularly apparent in prediction improvement for the Henry’s coefficient’s of both CO2 and CH4 as well as low 
pressure CH4 . This improvement is especially noticeable in R 2 scores. For example, as seen in Table 3, our ML 
framework results in a 165% improvement over the structural features when predicting the Henry’s coefficient 
for CO2 . The implications here are vast as adsorption in the infinite dilution regime, such as is commonly seen 
at low partial pressures, is very important for carbon capture applications. Moreover, the same model provides 
additional improvement over RMSD and R 2 scores across all the targets, with an average decrease of 27.8% in 
RMSD and an average increase of 68% in R 2 score. While the same structural features cannot be used for accurate 
predictions across many different targets, in contrast, our model shows far greater transferability. Supplementary 
Fig. 2 shows further visualization of the results with different sets of features.

Notably, across all the datasets, the model combining topological and structural features only performs 
marginally better than the topological features alone. This indicates that the topological features are capturing 
almost everything the structural features capture, as well as much more.

Interpretability
We also show the utility of our approach from an interpretability point of view. The feature importances extracted 
from the ML models contain important information to enhance our understanding of the material design process, 
and we explore multiple facets of this in the next sections.

Table 1.  Summary of model performances for hMOF dataset and  CO2 adsorption. Machine learning results 
for carbon dioxide adsorption predictions on the hMOF dataset at different pressures, represented by  R2 score. 
The best performing model for a given pressure is highlighted.

Descriptor 0.01 bar 0.05 bar 0.1 bar 0.5 bar 2.5 bar

Structural 0.45 0.55 0.61 0.67 0.71

Topological 0.57 0.64 0.68 0.75 0.80

T + S 0.70 0.70 0.72 0.78 0.84

T + WE 0.71 0.84 0.85 0.90 0.93

T + S + WE 0.70 0.86 0.88 0.92 0.94

Best model, Fanourgakis et al.11 – 0.65 – 0.90 0.93

Table 2.  Model performance on BW dataset. Root-mean-square-deviation (RMSD) and coefficient of 
determination  (R2 score) results in predicting the Henry’s coefficient (log k H ) for  CO2 and  CH4, gas uptakes 
for  CO2, and gas uptakes for  CH4 for the BW dataset. Different sets of features (S = baseline structural, T = 
topological, T + WE = topological and word embeddings) are shown. For each target, the units are mol kg−1 
Pa−1 and V STP /V respectively. The best model is in bold. As the improvement from the topology + word 
embeddings is always greater than the structural features, the percentage of improvement (decrease in the case 
of RMSD and increase in the case of R 2 score) is also shown ( �).

Target

RMSD R2 score

S T T + WE � S T T + WE �

log(KH ) CO2 0.46 0.38 0.33 28.3% 0.60 0.68 0.78 30%

log(KH ) CH4 0.27 0.20 0.18 33.3% 0.50 0.73 0.79 58%

0.15 bar CO2 0.71 0.56 0.49 31% 0.57 0.71 0.79 38.6%

16 bar CO2 1.9 2.53 1.80 5.3% 0.93 0.88 0.94 1.1%

5.8 bar CH4 19.18 14.85 13.97 27.2% 0.68 0.82 0.84 23.5%

65 bar CH4 23.87 20.61 17.66 26% 0.83 0.87 0.90 8.4%
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Feature analysis. The random forest algorithm infers the importance of individual features by measuring 
how frequently they are used by the decision trees to make a prediction about a MOF. In our methodology, there 
are three distinct types of features: topological, structural, and word embeddings. Further, topological features 
come in two types, 1-dimensional features that capture the distribution of channels in the MOF and 2-dimen-
sional features that describe the voids. Each of those consists of 2500 individual features (pixels in the persistence 
image), but we combine them to infer the aggregate importance of the different feature types. In this section, we 
analyze contributions from the topological and word embedding features, since the structural features contrib-
ute little extra information.

Figure 3 shows the relative importance of topological descriptors and word embeddings. For the BW dataset, 
2D features are most important for the prediction, with word embeddings playing a larger role in the predictions 
of the Henry’s coefficient. For the CoREMOF dataset, word embeddings are more important, especially for the 
CO2 Henry’s coefficient where they account for 50–60% of the decisions, with topological features dominating 
the importance of predictions for both low and high pressure methane adsorption (albeit, 1D features play a 
larger role in low pressure methane adsorption, while 2D features play a larger role in high pressure methane 
adsorption). For the hMOF dataset, 1D topological features are most important at low pressures, with 2D being 
more important at higher pressure, and word embeddings used in ∼ 30% of the decisions.

As Fig. 3 shows, topological features play a major role in predicting gas adsorption, with the 1-dimensional 
channels being especially important for adsorption at low pressures in the CoREMOF and hMOF datasets, and 
2-dimensions voids being important for the predictions with the BW dataset. The differences in feature impor-
tances can also be linked back to the data: for example, the CoREMOF MOFs tend to have smaller pores than 
the BW MOFs.

These results reveal the importance of different properties for different tasks. They support the claim that 
chemical information is more important for infinite dilution and low-pressure CO2 adsorption. In these condi-
tions, the specific interactions between the gas and the MOF framework, e.g. manifested as strong binding sites, 
play an important role in adsorption capacity—the word embeddings capture this non-structural information. 

Table 3.  Model performance on CoREMOF dataset. Root-mean-square-deviation (RMSD) and coefficient 
of determination (R2 score) results in predicting the Henry’s coefficient (log k H ) for CO2 and CH4 and gas 
uptakes for CH4 for the CoREMOF dataset. Different sets of features (S = baseline structural, T = topological, 
T + WE = topological and word embeddings) are shown. For each target, the units are mol kg−1 Pa−1 and 
V STP /V respectively. The best model is in bold. As the improvement from the topology + word embeddings is 
always greater than the structural features, the percentage of improvement (decrease in the case of RMSD and 
increase in the case of R 2 score) is also shown ( �).

Target

RMSD R2 score

S T T + WE � S T T + WE �

log(KH ) CO2 0.90 0.73 0.60 33.3% 0.26 0.53 0.69 165%

log(KH ) CH4 0.34 0.30 0.24 29.4% 0.55 0.65 0.78 41.2%

5.8 bar CH4 27.15 22.00 20.19 25.7% 0.47 0.65 0.71 51.1%

65 bar CH4 32.06 25.57 24.57 23.1% 0.76 0.85 0.87 14.5%
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On the other hand, methane adsorption at higher pressure is mostly described by 2D topology features, which 
can described voids at large, a trend that we also observed in  zeolites25.

Our results also suggest why the conventional structural descriptors perform especially poorly when predict-
ing CO2 adsorption in hMOFs at low pressure or in the infinite dilution region. The standard structural features 
describe the pore geometry by the largest sphere to percolate through the materials and the largest sphere that 
can fit inside its pore system. At low pressures and/or in the infinite dilution region, the standard structural 
features are not able to capture the nuance of the gas molecules aggregating closer to the binding regions of the 
porous framework. In contrast, topological features record the widths of the channels that criss-cross the MOF 
as well as the sizes of different cavities. They also distinguishing between the distribution of channels and voids, 
by separating 1D and 2D topological features, and record other finer information about their shape.

Topological features and representative cycles. Nanoporous materials, and especially MOFs, are 
known for how tunable they are: experimentalists can synthesize materials with precisely sized pores. Under-
standing how structure features influence a particular material property helps guide this process. Our approach 
incorporating persistent homology is especially helpful in this task.

The points in a persistence diagram correspond to voids and channels of specific sizes. A point (b, d) in a 
2-dimensional diagram is generated by a cavity that can fit the largest sphere of radius d; the largest sphere that 
can access the cavity has radius b. A point (b, d) in a 1-dimensional diagram is produced by a channel in the mate-
rial, specifically, by its narrowest “bottleneck.” The death value, d, records the radius of the largest sphere that can 
pass through this bottleneck. The birth value, b, records how close the atoms of the bottleneck are to each other.

For each dataset and each target property, the most important 1D and 2D birth-death points, as identified by 
the random forest algorithm, are listed in Table 4. We note a few patterns. In the case of methane adsorption in 
all three regimes (infinite dilution, low pressure, and high pressure), the 2D birth and death values are similar 
for both the BW and CoREMOF datasets—in fact, almost identical for the infinite dilution and high pressure 
cases. Specifically, birth values are around 2.3–2.4 Å for high pressure methane adsorption, and 3.4–3.8 Å for 
low pressure and infinite dilution methane adsorption. Death values are 3.2 Å for high pressure methane adsorp-
tion, and 4–4.6 Å for low pressure and infinite dilution methane adsorption. The radius of a methane molecule 
is assumed to be 3.8 Å. These results suggest that pores somewhat larger than this radius adsorb well at low 
pressures and partial pressures, while at high pressures slightly smaller pores influence the overall adsorption 
capacity of the MOF.

Another pattern to note in the hMOF dataset is that 1D death values get larger as pressure increases, meaning 
the size of the largest sphere able to pass through the channel increases. The radius of a CO2 molecule is assumed 
to be 3.3 Å. For high pressure targets, the model picks out the channels that can accommodate the molecule of 
this size. The 1D birth/death values for lower pressures correspond to smaller pores, such as the porous surface, 
which is related to the binding regions of the material’s pore.

We can dissect topological representations further and extract representative cycles for each point. Although 
these cycles are not unique—we are at the mercy of certain choices persistent homology calculation makes—
they are helpful in visualizing the cavities and channel bottlenecks represented by the points in the persistence 
diagram.

Table 4.  Most important 1D/2D birth–death points for the different datasets (in Angstroms). These values 
correspond to the porous framework sizes most important for a given adsorption task.

Target property 1D birth 1D death 2D birth 2D death

(a) BW dataset

log(KH ) CO2 1 4 3.3 4.1

log(KH ) CH4 1.6 2 3.6 4.4

0.15 bar CO2 3.5 3.6 3.4 4

16 bar CO2 1.7 2 3.1 3.9

5.8 bar CH4 1.4 3 3.8 4.6

65 bar CH4 3.6 4.3 2.3 3.2

(b) CoREMOF dataset

log(KH ) CO2 0.3 1.3 2.3 3.1

log(KH ) CH4 0.3 1 3.6 4.4

5.8 bar CH4 1 3.3 3.4 4

65 bar CH4 3.9 4.8 2.4 3.2

(c) hMOF dataset

0.01 bar CO2 0.02 0.7 3.2 3.5

0.05 bar CO2 1.1 1.6 1.6 2.1

0.1 bar CO2 1.1 2.7 4.4 5.5

0.5 bar CO2 1.3 3.5 4.7 5.8

2.5 bar CO2 1 3.7 4 5.1
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Since we train our machine learning algorithm on vectorized persistence images, we have to take an extra 
step to identify the points in a persistence diagrams with relevant representative cycles. We illustrate our steps 
for this approach in Supplementary Fig. 3.

We extracted the representative cycles from the high gas adsorption MOFs from different databases. Two 
examples, including both 1D topology (channels) and 2D topology (voids), appear in Fig. 4. One notable trend 
is that the loop in Figure 4a is present in many of the materials in the hMOF dataset that have high  CO2 adsorp-
tion at low pressure. Similarly, the void size seen in Fig. 4b is present in many of the MOFs with high Henry’s 
coefficients for  CO2 adsorption.

We expand on the latter by showing, as an example, in Fig. 5 the extracted voids that appear in a number of 
the top MOFs with a high  CO2 Henry’s coefficient. As noted  in33, the process of identifying the void structure 
that appears in top performing MOFs can be extremely time-consuming via manually detected features. Thus, 
we hope that our approach will allow for further study in pinpointing the channel and void shapes and bond-
ing structures that correlate best to important material’s properties, thereby encouraging the targeted design of 
structures to maximize desirable properties.

Word embeddings and material properties. We explore the interpretability of the word embeddings 
by relating their importances in predicting MOF properties and in predicting chemical properties of individual 
elements. The former we obtain from the random forests just as the importances of the topological features. 
To calculate the importances for individual elements, we retrieve word embeddings for all the elements in the 
matscholar  database21 and use these as features to train models to predict various chemical properties—electron-
egativity, atomic radius, electrical resistivity, melting point, etc.–of the pure elements contained in pymatgen’s 
‘periodic_table’  module34. We extract the feature importances for each of these models. Because each MOF has 
1000 features, summarizing the distribution of 200 features over its elements, as described in Section “Word 
embeddings”, we sum up the MOF feature importances corresponding to the same elemental feature.

We take the subset of feature importances that account for 90% of the random forest decisions. By definition, 
these features describe the subspace of our input where most of the decisions are made to make a prediction 
about the given target property. Given a MOF target property and a chemical target property, we compute the 
Jaccard similarity between the two subsets of features. This metric measures the relative size of the subspace, 
important for the random forest decisions for both targets.

Table 5 lists the top three materials properties by similarity to each MOF target property; all of them have a 
Jaccard similarity greater than 0.4. Following this procedure, we identify the chemical property with the strongest 
informational relevance to a given MOF target property.

We focus on interpreting the results from a MOF design perspective. The word-embedding features play a 
bigger role than topology in predicting log(KH ) CO2 . For this target, the machine learning model trained on 
electronegativity was the most similar to the model trained on the word embeddings for each MOF. This sug-
gests that local interactions are more significant in carbon dioxide adsorption in the infinite dilution regime, 
which is consistent with qualitative descriptions of low pressure or dilute-limit profiles of absorptivity in porous 
materials from  literature12.

Thermal conductivity also appears multiple times, and is the most relevant elemental property for high pres-
sure CH4 adsorption. The relevance of thermal conductivity at higher pressures is more difficult to interpret, given 
that thermal conductivity contains an electronic and vibrational component. However, a relationship between 
thermal conductivity and MOF geometry has been suggested previously. Specifically, thermal conductivity cor-
relates with pore size and  porosity35,36, which in turn affects adsorption. Thus, when designing a MOF, including 
or substituting metal atoms which have low thermal conductivity in their phase pure form may improve adsorp-
tion in MOF structures. The coordination environment and identity of the coordinating linkers also likely plays 
a role in determining the trend for a given site. For reference, we have included the compositions of the high 
adsorption MOFs for each prediction task in the Supplementary Material.

Another materials property that appeared multiple times for multiple MOF targets was the Poisson’s ratio, 
which reflects elasticity of a material. This is another property that fits in the existing paradigm of MOF design: 

Figure 4.  Example 1D and 2D representative cycles for different MOFs. (a) 1D channel, hMOF-675 (hMOFs) 
(b) 2D void, str-m4-o14-o14-acs-sym-5 (BW). The representative cycles are picked based on the approach 
described in Supplementary Fig. 3. Figure created with VisIt 3.1.4 (https:// wci. llnl. gov/ simul ation/ compu ter- 
codes/ visit).

https://wci.llnl.gov/simulation/computer-codes/visit
https://wci.llnl.gov/simulation/computer-codes/visit
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namely, flexibility. MOFs with flexible frameworks often are better  adsorbents37, since they can accommodate a 
larger space to fit a gas molecule with less stress.

In summary, the latent information contained in the word embeddings overlaps with known descriptors for 
MOF gas adsorption, pointing to important chemical features for designing high adsorption  MOFs38.

Conclusions
We have developed an automated end-to-end machine learning framework for MOFs, and nanoporous materials 
in general, by using persistent homology and word embeddings. Our approach builds a complex and holistic 
representation of the materials using only the basic input material structure, requiring less handcrafting and 
domain expert guidance than the currently widely—used porosity and chemical descriptors. Our topological 
representation is a vectorized persistence diagram, obtained from the atomic coordinates of the normalized 

Figure 5.  Correlating void structure to MOF property. (a) str-m4-o14-acs-sym-8 (b) str-m4-o1-o22-acs-
sym-94 (c) str-m4-o1-o24-acs-sym-96 (d) str-m4-o1-o24-acs-sym-165. The representative cycles of voids 
corresponding to the void most correlated with the CO2 Henry’s coefficient in example MOFs with high CO2 
Henry’s coefficients. The voids are all composed of a similar bonding structure, with each different atom type 
represented by a different color. As noted  in33, the process of identifying the void structure that appears in top 
performing MOFs can be extremely time-consuming via manually detected features. Thus, we hope that our 
much faster and topologically—grounded approach will allow for further study in pinpointing the channel and 
void shapes and bonding structures that correlate best to important material’s properties, thereby encouraging 
the targeted design of structures to maximize desirable properties. Figure created with VisIt 3.1.4 (https:// wci. 
llnl. gov/ simul ation/ compu ter- codes/ visit).

Table 5.  Material properties sharing overlap with word embedding feature importances. Machine learning 
models trained with elemental word embeddings and materials properties are compared to the models 
trained with MOF composition word embeddings and MOF target properties for the CoREMOF dataset. The 
feature importances of each model are analyzed, and compared by Jaccard similarity. The top three materials 
properties most similar to the model trained to MOF target properties are listed.

Target property 1 2 3

log(KH ) CO2 Electronegativity Poisson’s ratio Mendeleev’s number

log(KH ) CH4 Electronegativity Poisson’s ratio Thermal conductivity

5.8 bar CH4 Thermal conductivity Poisson’s ratio Brinell’s hardness

65 bar CH4 Thermal conductivity Electronegativity Melting point

https://wci.llnl.gov/simulation/computer-codes/visit
https://wci.llnl.gov/simulation/computer-codes/visit
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supercell representation of a materials’ crystal structure. It can be used in any machine learning algorithm. 
We augment the topological information with element embeddings, constructed from a large set of scientific 
abstracts via the word2vec  algorithm21. They provide a generalized representation of the MOF composition. We 
have tested this approach on three different datasets, predicting several important methane and carbon capture 
adsorption targets at various pressures. These experiments show a significantly improved performance compared 
to standard structural descriptors. The topological features we compute are generic and transferable across dif-
ferent property targets. As the topological descriptors consistently outperform standard structural descriptors, 
they provide a simple way to boost the performance of any machine learning algorithm. Additionally, to our 
knowledge, these descriptors are the best purely geometric descriptors for predicting gas adsorption at low pres-
sures and in the infinite dilution regime. Moreover, these descriptors are interpretable: their components can be 
traced to specific channels and voids in the crystal structure, which contributes to a greater understanding of 
structure–property relationships in MOFs.

We conclude by highlighting the key strengths of our approach. 

(1) It is an ML pipeline that can automatically generate descriptors for a particular material’s prediction task 
without the need to handcraft specific features. We make large gains in performance (ranging from an aver-
age 25–30% in root-mean-square-deviation and an average 45–50% increase in  R2 scores) across numerous 
different gas adsorption targets.

(2) The generalizability and transferability of our ML model provides a way to quickly screen any dataset to 
find the top MOFs for a particular task without the need to handcraft specific features, speeding up high-
throughput screening of materials for adsorption applications. As our results show, topological descriptors 
should be used for any porous materials adsorption prediction task and bring us closer to having a universal 
predictor for adsorption in porous materials.

(3) Our model helps guide materials design by directly connecting property predictions to the crystal structure, 
thereby encouraging the targeted design of structures to maximize desirable properties.

Code availability
The code for generation of the material representations is available at: http:// www. github. com/ a1k12/ molec 
ule- tda.
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