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INTRODUCTION

Persistent homology was introduced in [ELZ00] and quickly developed into the
most influential method in computational topology. There were independent devel-
opments of this idea preceding this paper, and we mention the little known paper by
Marston Morse [Mor40], the spectral sequences introduced by Jean Leray in [Ler46],
the notion of prominence in mountaineering [Mun53], the size function introduced
by Frosini [Fro90], and the study of fractal sets by Robins [Rob99]. Perhaps the
fast algorithm described in [ELZ00] triggered the explosion of interest we currently
observe because its availability as software facilitates the application to a broad
collection of problems and datasets.

From the mathematical perspective, persistent homology is part of Morse the-
ory [Mil63]. Functions come naturally, which explains the affinity to applications
and to data. Persistent homology quantifies the critical points, which we illustrate
with the resolution of a basic question in mountaineering: what is a mountain?
We can identify a mountain with its peak, but clearly not every local maximum
on Earth qualifies as a mountain. The summit of Mt. Everest is prominent but its
South summit is not, despite being higher than any other mountain in the world.
To identify peaks that are prominent, climbers measure how far they have to de-
scend before they can climb to an even higher peak. This measurement, called
the topographic prominence, assigns a significance to every local maximum of the
elevation function on planet Earth, and peaks with prominence above 500 meters
qualify as separate mountains. Persistence addresses the multi-scale aspects of nat-
ural phenomena by generalizing topographic prominence to more general functions
and to higher-dimensional features and holes. It also applies to abstract and high-
dimensional data, such as sound, documents, DNA sequences, and languages by
equipping the data with a possibly discrete metric.

Section 26.1 explains persistence algebraically, as an extension of the classical
notion of homology. Section 26.2 approaches persistence geometrically, focusing
on the functions and complexes whose persistence we compute. Section 26.3 is
analytic in nature, studying the space of persistence diagrams and the stability
of persistence. Section 26.4 focuses on algorithms, explaining the connection to
matrix reduction and how the computation can be made fast in important cases.
Section 26.5 returns to the algebraic foundations, describing zigzag persistence as
a unifying as well as generalizing concept. Section 26.6 illustrates the application
of persistent homology by considering two mathematical questions.

26.1 ALGEBRA

We recall basic concepts from algebraic topology to explain homology as well as
its recent extension, persistent homology. The first four of these concepts can also
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be found in Chapter 18, and we repeat the definitions to be consistent with the
notation adopted in this chapter.

GLOSSARY

Abstract simplex: a non-empty finite subset of a universal vertex set, α ⊆ U. Its
dimension is one less than its cardinality, dimα = cardα−1. Setting p = dimα,
we call α an (abstract) p-simplex. A face is a non-empty subset of α. An ordering
of α is a sequence of its p+1 vertices, denoted α = [v0, v1, . . . , vp]. An orientation
is a class of orderings that differ by an even number of transpositions. Every
simplex has two orientations, except for a 0-simplex, which has only one.

Abstract simplicial complex: a finite collection of abstract simplices, A, that
is closed under the face relation: β ∈ A and α ⊆ β implies α ∈ A. Its dimension
is the maximum dimension of any of its simplices. A subcomplex is an abstract
simplicial complex B ⊆ A. The p-skeleton is the largest subcomplex whose
dimension is p. For example, the 1-skeleton of A is a graph.

Geometric simplex: the convex hull of a non-empty and affinely independent
set of points in Rn. Assuming U is a set of points in Rn, we define dimension,
(geometric) p-simplex, face, ordering, and orientation as in the abstract case.

Geometric simplicial complex: a finite collection of geometric simplices, K,
that is closed under the face relation such that σ, τ ∈ K implies σ ∩ τ is either
empty or a face of both simplices. We define dimension and subcomplex as in
the abstract case. The underlying space of K, denoted |K|, is the set of points in
Rn contained in simplices of K together with the Euclidean topology inherited
from Rn. While K is a combinatorial object, |K| is a topological space.

Chain: a formal sum of ordered simplices of the same dimension, c =
∑
i aiσi.

The coefficients ai are elements of an abelian group. If all simplices have di-
mension p, then we call c a p-chain. We add p-chains like polynomials. The
set of p-chains of a simplicial complex, K, is the p-chain group of K, denoted
Cp = Cp(K). If the coefficients are elements of a field, then Cp is a vector space.

Boundary map: the linear map ∂p : Cp → Cp−1 defined by mapping an ordered
p-simplex to the alternating sum of its (p − 1)-dimensional faces. For σ =
[v0, v1, . . . , vp], we get ∂pσ =

∑p
i=0(−1)iσ̂i, in which σ̂i is σ without vertex

vi. Note that ∂0[vi] = 0 for every i. It is not difficult to verify that ∂p−1 ◦∂p = 0
for all p.

Chain complex: an infinite sequence of chain groups connected by boundary

maps, . . .
∂p+1→ Cp

∂p→ Cp−1
∂p−1→ . . .. The p-cycle group is the kernel of the

p-th boundary map, Zp = ker ∂p. It is the subgroup of p-chains with zero
boundary. The p-boundary group is the image of the (p + 1)-st boundary map,
Bp = img ∂p+1. It is the subgroup of p-cycles that are the boundary of a (p+ 1)-
chain.

Homology group: the quotient of the cycle group over the boundary group. Call
two cycles homologous if they differ only by a boundary. A homology class is
the maximal collection of homologous cycles in a complex. Fixing p, the set of
homology classes of p-cycles is the p-th homology group, Hp = Zp/Bp. If the
coefficients are elements in a field, then Hp is a vector space.
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Relative homology: the generalization of homology to pairs K0 ⊆ K. Here
we distinguish two chains only if they differ within K \ K0: Cp(K,K0) =
Cp(K)/Cp(K0) for all p. The boundary maps ∂p : Cp(K,K0) → Cp−1(K,K0)
are well defined, and we set Zp(K,K0) = ker ∂p, Bp(K,K0) = img ∂p+1, and
Hp(K,K0) = Zp(K,K0)/Bp(K,K0).

Exact sequence: a sequence of abelian groups connected by homomorphisms,
. . . → Vi → Vi−1 → . . ., in which the image of each map is equal to the kernel
of the next map. In the case of vector spaces, the homomorphisms are linear
maps. An exact sequence of five abelian groups that begins and ends with zero,
0→ V3 → V2 → V1 → 0, is called a short exact sequence.

Filtered simplicial complex: a simplicial complex, K, together with a function
f : K → R such that f(σ) ≤ f(τ) whenever σ is a face of τ . The sublevel
set at a value r ∈ R is f−1(−∞, r], which is a subcomplex of K. Letting
r0 < r1 < . . . < rm be the values of the simplices and writing Ki = f−1(−∞, ri],
we call K0 ⊆ K1 ⊆ . . . ⊆ Km the sublevel set filtration of f .

Persistence module: a sequence of vector spaces connected by linear maps,
fsr : Ur → Us, for every pair of values r ≤ s, such that frr = id and f tr = f ts ◦ fsr
for all r ≤ s ≤ t. We denote such a module by U = (Ur, f

s
r ). For example, the

persistence module of the above filtered simplicial complex isH(K) = (H(Ki), f
j
i )

in which H(Ki) is the direct sum of the p-th homology groups of Ki, over all p,
and f ji : H(Ki)→ H(Kj) is induced by the inclusion Ki ⊆ Kj .

HOMOLOGY

While we restricted the above definitions to simplicial complexes, homology groups
can be defined in much greater generality. For example, we may use singular sim-
plices (continuous maps of simplices) to construct the singular homology groups of
a topological space. An example of such a space is X = |K|, and importantly, the
singular homology groups of X are isomorphic to the simplicial homology groups of
K. We refer to the axiomatization of Eilenberg and Steenrod [ES52] for the main
tool to reach a unified view of the many different constructions of homology in the
literature.

Homology groups, Betti numbers, and Euler characteristic. Assuming
coefficients in a field, F, each homology group is a vector space, Fβ . Here, β is
a non-negative integer, namely the dimension of the vector space or the rank of
the group. Writing Hp(X) = Fβp , we call βp = βp(X) the p-th Betti number of
X. Historically, Betti numbers preceded homology groups. In turn, the Euler
characteristic of X, which we can define as χ(X) =

∑
p≥0(−1)pβp(X), preceded the

Betti numbers. For example, it was known already to Leonhard Euler that χ of
the boundary of any convex polytope in R3—then defined as the alternating sum
of face numbers—is 2.

Relative and local homology. Instead of defining homology for a space that is
partially open, it is more convenient to define it for a pair of closed spaces, K0 ⊆ K.
One motivation for introducing this concept is the desire to define homology locally,
at a point x ∈ X. We may capture the homology within an open neighborhood N
of x by constructing Hp(X,X\N). Shrinking the neighborhood towards x, the local
homology of X at x is the limit of the relative homology.
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Snake Lemma. As one of the main achievements of algebraic topology, this
lemma is a recipe for the construction of long exact sequences. Specifically, if
0→ C→ D→ E→ 0 is a short exact sequence of chain complexes, then

. . .→ Hp+1(E)→ Hp(C)→ Hp(D)→ Hp(E)→ Hp−1(C)→ . . .

is a long exact sequence of homology groups. This is useful because exact sequences
provide a powerful language to compactly encode relationships between homology
groups. We illustrate this with two examples.

Long exact sequence of a pair. Letting K0 ⊆ K be two simplicial complexes,
we consider 0 → Cp(K0) → Cp(K) → Cp(K,K0) → 0, for every integer p ≥ 0, in
which the middle two maps are inclusions. It is not difficult to see that the kernel
of every map is the image of the preceding map. By the Snake Lemma,

. . .→ Hp+1(K,K0)→ Hp(K0)→ Hp(K)→ Hp(K,K0)→ Hp−1(K0)→ . . .

is a long exact sequence.

Mayer–Vietoris long exact sequence. Letting K = A ∪ B be three simplicial
complexes, we consider 0 → Cp(A ∩ B) → Cp(A) ⊕ Cp(B) → Cp(A ∪ B) → 0, for
every integer p ≥ 0, in which the second map is the direct sum of two inclusions
and the third map is the sum of two inclusions. By the Snake Lemma,

. . .→ Hp+1(K)→ Hp(A ∩B)→ Hp(A)⊕ Hp(B)→ Hp(K)→ Hp−1(A ∩B)→ . . .

is a long exact sequence. It has many applications within algebraic topology, in-
cluding the construction of the zigzag pyramid as discussed in Section 26.5.

PERSISTENCE

While homology defines holes and counts them, persistent homology also measures
them. This additional feature opened a floodgate of applications to the sciences
and beyond and has established computational topology as a viable new field of
mathematical inquiry; see e.g. Edelsbrunner and Harer [EH10]. The idea itself has
several independent roots in the mathematical literature, the earliest of which is a
little known paper by Marston Morse [Mor40]. The description in [ELZ00] together
with the algorithms for computing persistence diagrams have initiated the current
interest in the subject.

Persistence module of a function. Let X be a topological space and f : X →
R a real-valued function. Writing Xr = f−1(−∞, r], the sublevel sets form a
filtration of the topological space, Xr ⊆ Xs for all r ≤ s. Taking the homology
of every sublevel set, we get a persistence module for each dimension, Hp(f) =
(Hp(Xr),psr), in which the maps psr are induced by the inclusions Xr ⊆ Xs. We
often simplify the notation by taking direct sums of homology groups and maps,
H(Xr) =

⊕
p≥0 Hp(Xr) and fsr =

⊕
p≥0 p

s
r, and consider the persistence module

H(f) = (H(Xr), fsr ) that simultaneously captures all dimensions.

Decomposition into summands. Under mild assumptions, a persistence module
decomposes uniquely into elementary pieces. To describe this, we call a persistence
module, U = (Ur, f

s
r ), q-tame (“q” for quadrant), if the rank of fsr is finite for all

r < s. Given an interval [b, d), the corresponding interval module is I = (Ir, i
s
r),

with vector spaces Ir = F whenever b ≤ r < d and Ir = 0 otherwise, as well as maps
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isr = id whenever b ≤ r ≤ s < d and isr = 0, otherwise. Every q-tame persistence
module decomposes uniquely as a direct sum of interval modules, U =

⊕
j Ij . The

interval modules are indecomposable summands. There is an alternative way to
describe this decomposition: select elements uri in each vector space Ur, such that
the nonzero elements form a basis of Ur, and the maps diagonalize with respect to
these bases, i.e., fsr (uri ) = usi whenever uri 6= 0. Note that the uri are not unique, but
the intervals they define are. If the decomposition of module U contains a module
for interval [b, d), we say that a class is born at Ub and dies entering Ud.

Persistence diagram. The information contained in a persistence module has
intuitive combinatorial representations. The persistence diagram associated with
U =

⊕
j Ij , denoted Dgm(U), is the multi-set of points (bj , dj) with Ij defined by

[bj , dj). For technical reasons that will become clear when we discuss the stability
of persistence diagrams, we usually add infinitely many copies of the points (x, x)
on the diagonal to the persistence diagram. When U = H(f) is defined by the
sublevel sets of a function, we abbreviate the notation to Dgm(f) = Dgm(H(f)), or
Dgmp(f) = Dgm(Hp(f)) if we wish to restrict the information to a single dimension
p. Sometimes U is represented by the corresponding multi-set of intervals, [bj , dj),
which is referred to as the barcode of U .

Equivalence of persistence modules. Two persistence modules, U = (Ur, f
s
r )

and V = (Vr,g
s
r), are isomorphic if the vector spaces are pairwise isomorphic,

Ur ' Vr for all r, and these isomorphisms commute with the maps fsr and gsr in the
modules. This situation can be graphically represented by the squares

Ur Us

Vr Vs,

//
fsr

��
'

����
'

//
gs
r

(26.1.1)

which are required to commute for all r ≤ s.

THEOREM 26.1.1 Persistence Equivalence Theorem

Isomorphic persistence modules imply identical persistence diagrams,
Dgm(U) = Dgm(V).

Extended persistence. Some applications of persistent homology require an ex-
tension of the filtration defining the module; see e.g. [AEHW06, EP16]. We explain
this for the filtration of sublevel sets of a function f : X → R for which the exten-
sion consists of the pairs (X,Xr), with Xr = f−1[r,∞) the superlevel set of f at r.
Applying homology, we get vector spaces of the form H(X,Xr), and a persistence
module with maps frs : H(X,Xs)→ H(X,Xr) for all r < s. Since H(X) = H(X, ∅), we
can append the new persistence module to H(f) and get the extended persistence
module, Hext(f), and the extended persistence diagram, Dgm(Hext(f)).

26.2 GEOMETRY

In many applications of persistent homology, the essential geometric information is
encoded in the filtration. While this is not necessary, it is a convenient vehicle for
measuring geometry with topology.
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GLOSSARY

Star of a simplex: the set of simplices in a simplicial complex that contain the
given simplex, Stσ = {τ ∈ K | σ ⊆ τ}. The closed star also contains the faces
of the simplices that contain the given simplex, Stσ = {υ ∈ K | υ ⊆ τ ∈ Stσ}.
The link contains all simplices in the closed star that avoid the given simplex,
Lkσ = {υ ∈ Stσ | υ ∩ σ = ∅}.

Piecewise-linear function: a real-valued function f : |K| → R that is specified
on the vertices of K and is interpolated linearly on the simplices. To stress
the point that the complex is not refined before interpolation, f is sometimes
referred to as a simplexwise-linear function.

Lower star of a vertex: the subset of the star in which the vertices of every
simplex have function values smaller than or equal to the value at the given
vertex, St−u = {τ ∈ Stu | f(v) ≤ f(u) for all v ∈ τ}. Similarly, the lower link
of the vertex is Lk−u = {τ ∈ Lku | f(v) ≤ f(u) for all v ∈ τ}.

Barycentric subdivision: an abstract simplicial complex, SdK, which has the
simplices σi ∈ K as its vertices, and which has a simplex τ = [σ0, σ1, . . . , σp] iff
its vertices form a chain of faces in K, i.e., σ0 ⊆ σ1 ⊆ . . . ⊆ σp.

Homotopy equivalence: an equivalence relation between topological spaces. To
define it, we call a continuous map h : X × [0, 1] → Y a homotopy between the
maps a, b : X → Y that satisfy a(x) = h(x, 0) and b(x) = h(x, 1) for all x ∈ X.
Now X and Y are homotopy equivalent, or they have the same homotopy type,
denoted X ' Y, if there are maps f : X→ Y and g : Y→ X such that there is a
homotopy between g ◦ f and idX as well as between f ◦ g and idY. A contractible
set is homotopy equivalent to a point.

Deformation retraction from X to Y: is a continuous map D : X× [0, 1]→ X
such that D(x, 0) = x, D(x, 1) ∈ Y, and D(y, t) = y for all x ∈ X, y ∈ Y, and
t ∈ [0, 1]. If such a D exists, then Y is a deformation retract of X. Note that
Y is then homotopy equivalent to X. Indeed, setting f : X → Y and g : Y → X
defined by f(x) = D(x, 1) and g(y) = y, we get D as a homotopy between g ◦ f
and idX, and we get the identity as a homotopy between f ◦ g and idY.

Hausdorff distance: an extension of a distance between points to a distance
between point sets,

dH(X,Y ) = max{sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖}. (26.2.1)

Writing Xr = X +B(0, r) for the Minkowski sum with the closed ball of radius
r ≥ 0, dH(X,Y ) is the infimum radius r such that X ⊆ Y r and Y ⊆ Xr.

Nerve: a simplicial complex associated to a collection of sets. The sets are the
vertices of the complex, and a simplex belongs to the complex iff its vertices have
a non-empty intersection, NrvS = {α ⊆ S |

⋂
A∈αA 6= ∅}. If the sets in S are

convex, then the nerve is homotopy equivalent to the union of these sets. This
results is known as the Nerve Theorem [Bor48, Ler46], and it generalizes to the
case in which all non-empty common intersections are contractible.

Čech complex: the nerve of the ball neighborhoods of a set of points X ⊆ Rn.
Writing B(x, r) for the closed ball of radius r ≥ 0 centered at x, the Čech complex
of X for radius r is Čechr(X) = Nrv{B(x, r) | x ∈ X}.
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Alpha complex: the nerve of the clipped ball neighborhoods of a set of points
X ⊆ Rn. Here we clip B(x, r) with the Voronoi domain of x, which consists
of all points a ∈ Rn that are at least as close to x as to any other point in X.
Writing V (x) = {a ∈ Rn | ‖a − x‖ ≤ ‖a − y‖ for all y ∈ X}, the alpha complex
of X for radius r is Alphar(X) = Nrv{B(x, r) ∩ V (x) | x ∈ X}. To stress the
connection to the dual of the Voronoi domains, Alphar(X) is sometimes referred
to as the Delaunay complex of X for radius r. It is a subcomplex of the Delaunay
triangulation, Alpha∞(X), which is the dual of the Voronoi domains.

Vietoris–Rips complex: the largest simplicial complex whose 1-skeleton is also
the 1-skeleton of the Čech complex. Given a graph G = (V,E), the clique
complex contains all cliques of G, namely all simplices α ⊆ V for which E
contains all edges of α. With this notation, the Vietoris–Rips complex of X for
radius r is the clique complex of the 1-skeleton of the Čech complex of X and r,
Ripsr(X) = {α ⊆ X | ‖u− v‖ ≤ 2r for all u, v ∈ α}.

PIECEWISE-LINEAR FUNCTIONS

Functions generally do not have finite descriptions, so we have to work with approx-
imations. For example, we may fix the values at a finite set of points and make up
the information in between by interpolation. Due to its simplicity, the description
in which the interpolation is piecewise linear is popular in applications.

Sublevel sets and lower stars. Given a piecewise-linear function f : |K| →
R and a value r ∈ R, we recall that the corresponding sublevel set is |K|r =
f−1(−∞, r]. It is not necessarily the underlying space of a subcomplex of K, but it
is homotopy equivalent to one. Specifically, let Kr ⊆ K contain all simplices whose
vertices have values smaller than or equal to r. Equivalently, Kr is the union of the
lower stars of all vertices with function values at most r. Clearly |Kr| ⊆ |K|r, and
it is not difficult to see that there is a deformation retraction from |K|r to |Kr|,
implying that the two are homotopy equivalent.

Lower star filtration. Starting with the piecewise-linear function f : |K| → R, we
construct a function g : K → R that maps every simplex to the maximum function
value of its vertices. Observe that K together with g is a filtered complex, and
that Kr = g−1(−∞, r] for every r. The resulting nested sequence of complexes is
usually referred to as the lower star filtration of f or of g.

Hierarchy of equivalences between spaces. Recall that a homeomorphism
h : X → Y is a continuous bijection whose inverse is continuous. If such an h
exists, then X and Y are topologically equivalent or they have the same topology
type. Topological equivalence is stronger than homotopy equivalence, which in turn
is stronger than homology. In other words, if X and Y are homeomorphic, then
they are homotopy equivalent, and if they are homotopy equivalent, then they have
isomorphic homology groups. These implications cannot be reversed.

Equivalent persistence modules. Passing to homology, we get two persistence
modules, F = (H(|K|r), fsr ) and G = (H(Kr),g

s
r). For any two values r ≤ s, we get
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a square,

H(|K|a) H(|K|b)

H(Ka) H(Kb),

//

//

OO OO

(26.2.2)

in which all four maps are induced by inclusion. It follows that the square com-
mutes. Since |Kr| ' |K|r, for all r, the vertical maps are isomorphisms. As
explained earlier, this implies that the two modules have the same persistence dia-
gram, Dgm(f) = Dgm(g).

Filtration as a piecewise-linear function. Given a filtered simplicial complex,
K with f : K → R, we define a piecewise-linear function on its barycentric subdi-
vision, g : |SdK| → R, by setting the value at the vertices to g(σi) = f(σi), for all
σi ∈ K. The two persistence modules, H(f) and H(g), are isomorphic because the
sublevel sets of g deformation retract onto the sublevel sets of f .

DISTANCE FUNCTIONS

Besides piecewise-linear functions, distance functions on the ambient space of given
data are most popular in applications of persistent homology. Given X ⊆ Rn, it is
the function dX : Rn → R defined by mapping every a ∈ Rn to the distance to X,
dX(a) = infx∈X ‖a − x‖. The sublevel set of dX for r ≥ 0 is the union of balls of
radius r centered at the points of X.

Distance functions and Hausdorff distance. If two sets X,Y ⊆ Rn are close
in Hausdorff distance, then their distance functions are close:

sup
a∈Rn

|dX(a)− dY (a)| ≤ dH(X,Y ). (26.2.3)

This motivates us to recover properties of a shape that are stable under Hausdorff
perturbations from point samples of the shape. Indeed, we will see in the next
section how the homology of a shape can be recovered from the homology of a
point sample. Meanwhile, we study three filtered complexes that are commonly
used to represent the sublevel sets of a distance function.

Persistence and nerves. Let S be a collection of convex sets and recall the
Nerve Theorem, which asserts that NrvS '

⋃
S.

THEOREM 26.2.1 Persistence Nerve Theorem

Let T be a second collection of convex sets and b : S → T a bijection such that
s ⊆ b(s) for every set s ∈ S. Then the inclusion between the two nerves induced by b
and the inclusion between the two unions commute with the homotopy equivalences,⋃

S
⋃
T

NrvS Nrv T.

//

OO

//

OO (26.2.4)

Čech and alpha complexes are homotopy equivalent. Indeed, both com-
plexes are homotopy equivalent to the corresponding union of balls. Moreover, the
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filtrations of Čech complexes, of alpha complexes, and of sublevel sets of the dis-
tance function have the same persistence diagram. For the Čech complexes and the
sublevel sets, this statement follows from the Persistence Nerve Theorem 26.2.1 and
the Persistence Equivalence Theorem 26.1.1. For the alpha complexes, we observe
in addition that the union of balls and the union of clipped balls are the same.

Čech and Vietoris–Rips complexes are interleaved. By construction, the
Vietoris–Rips complex of a set X ⊆ Rn for radius r ≥ 0 contains the Čech complex
of X for r. However, the holes left by p + 1 balls that have pairwise non-empty
intersections cannot be large. Indeed, if we grow each ball to twice its initial
radius, each ball contains all p+ 1 centers. It follows that the p+ 1 balls of radius
2r have a non-empty common intersection. In summary, Čechr(X) ⊆ Ripsr(X) ⊆
Čech2r(X). For the special case of Euclidean distance, growing the balls to radius√

2r suffices to guarantee a non-empty common intersection, giving Ripsr(X) ⊆
Čech√2r(X).

26.3 ANALYSIS

The step from functions to homology is a temporary excursion to algebra, and we
are right back to analysis when we reason about the persistence diagrams that
summarize the features of the function.

GLOSSARY

Interleaving distance: a notion of distance between persistence modules. Specif-
ically, U = (Ur, f

s
r ) and V = (Vr,g

s
r) are ε-interleaved if there are maps ϕr : Ur →

Vr+ε and ψr : Vr → Ur+ε, for all r ∈ R, that commute with the maps inside the
modules. We get the interleaving distance between U and V by taking the infi-
mum of the ε ≥ 0 for which the modules are ε-interleaved.

Bottleneck distance: a notion of distance between persistence diagrams. Find-
ing a bijection, γ : Dgm(U) → Dgm(V), we quantify it by taking the maximum
L∞-distance of any two corresponding points. The bottleneck distance between
the persistence diagrams of U and V is the infimum over all bijections:

W∞(Dgm(U),Dgm(V)) = inf
γ

sup
x∈Dgm(U)

‖x− γ(x)‖∞. (26.3.1)

Wasserstein distances: a 1-parameter family of distances between persistence
diagrams. Fixing a real number q ≥ 1, we quantify a bijection γ : Dgm(U) →
Dgm(V) by taking the sum of the q-th powers of the L∞-distances between corre-
sponding points. The q-Wasserstein distance between the persistence diagrams
of U and V is the infimum of the q-th roots of these sums over all bijections:

Wq(Dgm(U),Dgm(V)) = inf
γ

 ∑
x∈Dgm(U)

‖x− γ(x)‖q∞

1/q

. (26.3.2)

It approaches the bottleneck distance as q goes to infinity.
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Moments: a 1-parameter family of summaries of a persistence diagram. Fixing
a real number q ≥ 0, the q-th moment of U is the sum of the q-th powers of the
persistences:

Mq(U) =
∑

(b,d)∈Dgm(U)

|d− b|q. (26.3.3)

It is sometimes referred to as the q-th total persistence of U . There are variants,
such as the level set moment, defined if U is the direct sum of the Up, for p ≥ 0,
which is the alternating sum of persistences:

Mχ(U) =
∑
p≥0

(−1)p
∑

(b,d)∈Dgmp(U)

(d− b). (26.3.4)

We note that Mχ(U) is equal to the integral of the Euler characteristic of f−1(r),
over all r ∈ R, provided U = Hext(f). Indeed, each point in the extended persis-
tence diagram contributes its persistence to the level set moment, which is the
contribution of the represented cycle to the integral of the Euler characteristic.
We note that points below the diagonal contribute negative values because they
represent level set homology classes of one dimension lower.

Local feature size at a point: the infimum distance of x ∈ X from a point
a ∈ Rn that has two or more nearest points in X ⊆ Rn, denoted lfs(x). The
closure of the set of points a ∈ Rn with two or more nearest points in X is
commonly referred to as the medial axis of X. The global version of the local
feature size is the reach of X defined as the infimum local feature size over all
points of X, reach(X) = infx∈X lfs(x). For example, if X is a smoothly embedded
compact manifold, then the reach is positive. The reach is at most one over the
maximum curvature but it can be smaller.

Homological critical value of a real-valued function: any value a ∈ R such
that the homology of the sublevel sets of the function changes at a, i.e., the map
H
(
f−1(−∞, a− ε]

)
→ H

(
f−1(−∞, a]

)
, induced on homology by inclusion, is

not an isomorphism for any sufficiently small ε.

Weak feature size of a set: the infimum positive homological critical value of
the distance function, dX : Rn → R, denoted wfs(X). It is larger than or equal
to the reach.

STABILITY

Persistence diagrams are stable under perturbations of the function. This is perhaps
the most important result in the theory. It was first proved for functions using the
bottleneck distance between persistence diagrams by Cohen-Steiner, Edelsbrunner
and Harer [CEH07]. Under some restrictions, stability holds also using Wasserstein
distances, as proved in [CEHM10]. The stability under the bottleneck distance has
been strengthened to a statement about persistence modules in [BL14, CDGO12].

Bottleneck stability for functions. Recall the bottleneck distance between two
persistence diagrams.

THEOREM 26.3.1 Bottleneck Stability Theorem
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Given f, g : X→ R, the bottleneck distance between their persistence diagrams does
not exceed the L∞-difference between the functions:

W∞ (Dgm(f),Dgm(g)) ≤ ‖f − g‖∞. (26.3.5)

We refer to Figure 26.3.1 for an illustration of this inequality, which is true in
great generality. For example, X is not constrained to manifolds or other special
classes of topological spaces. Also, the requirement on f and g are mild: they
need to be tame, which means that they have only finitely many homological crit-
ical values and every sublevel set has finite rank homology. The inequality can

FIGURE 26.3.1
Left: the graphs of two scalar functions on X = R. Right: the persistence diagrams of the two
functions. Each point marks the birth of a component at a local minimum and its death at a local
maximum.

R

X Birth

D
ea
th

be strengthened by composing g with a homeomorphism h : X → X. In other
words, the bottleneck distance between the two diagrams is bounded from above
by infh ‖f − g ◦ h‖∞.

Wasserstein stability for functions. For finite values of q, we get stability
under the q-Wasserstein distance only if we impose conditions on the space and the
function.

THEOREM 26.3.2 Wasserstein Stability Theorem

Let X be a triangulable compact metric space, assume there exists a constant C
such that the k-th moment of the persistence diagram of any function with Lipschitz
constant 1 is bounded from above by C, and let f, g : X→ R be two tame functions
with Lipschitz constant 1. Then

Wq (Dgm(f),Dgm(g)) ≤ C
1
q ‖f − g‖1−

k
q

∞ , (26.3.6)

for all q ≥ k.

Provided the exponent is positive, 1 − k
q > 0, the right-hand side vanishes as

the L∞-difference between f and g goes to zero. Hence, we have stability for q > k.

Interleaving isometry for persistence modules. The interleaving distance
between persistence modules can be inserted between the two sides of the inequality
in the Bottleneck Stability Theorem 26.3.1. Doing so, we get an equality on the
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left-hand side. But this equality holds more generally, namely also for persistence
modules that are not necessarily defined by functions:

W∞ (Dgm(U),Dgm(V)) = inf{ε | U and V are ε-interleaved}. (26.3.7)

Traditionally, the upper bound implied by the equality is referred to as stability.
For its proof it suffices to use the following two commuting diagrams and their
symmetric versions:

Ur Us

Vr−ε Vs+ε

//
fsr

��

ϕs

//
gs+ε
r−ε

??ψr−ε

Ur+ε Us+ε

Vr Vs

//
fs+ε
r+ε

//
gs
r

??ψr
??ψs

(26.3.8)

Interleaving on log-scale. The interleaving of Čech and Vietoris–Rips com-
plexes mentioned in the previous section suggests we draw the persistence dia-
grams for the two filtrations in log-scale. All critical values are non-negative,
which we preserve by mapping r ≥ 0 to log2(r + 1). Drawing the diagrams in
log-scale is therefore the same as drawing the persistence diagrams for the Čech
and Vietoris–Rips filtrations using f = log2(dX + 1) instead of the distance func-
tion. The corresponding persistence modules are ε-interleaved for ε = 1, which
implies W∞(Dgm(Čech),Dgm(Rips)) ≤ 1 for general metrics. The bound on the
right-hand side improves to 1

2 when we specialize to the Euclidean metric.

INFERENCE

The stability of persistent homology can be exploited to inferring the homology of
a space from a finite point sample. We follow [CEH07] in how this is done and
compare it with the inference result obtained without stability [NSW08].

Homology inference using stability. Given X ⊆ Rn, we recall that dX : Rn → R
maps every point to its distance from the closest point in X. Under mild conditions,
it is possible to infer the homology of X from the distance function defined by a
finite point set.

THEOREM 26.3.3 Homology Inference Theorem

Let X ⊆ Rn be compact, with weak feature size wfs(X) = 4ε > 0, and let X ⊆ Rn
be finite with Hausdorff distance dH(X,X) ≤ ε from X. Then

rkH(X) = rk
[
H(d−1X [0, ε])→ H(d−1X [0, 3ε])

]
. (26.3.9)

In words, every homology class of X can already be seen in the sublevel set at
ε, and it can still be seen in the sublevel set at 3ε. Furthermore, under the given
assumptions, no other homology classes can be seen in both these sublevel sets.

Homology inference without using stability. Here we let X be a manifold that
is smoothly embedded in Rn. Its reach is positive, and we let X ⊆ X have small
Hausdorff distance, dH(X,X) ≤ ε

2 . Then for any ε <
√

3/5 reach(X), the homology
of the sublevel set of dX : Rn → R for ε is the homology of the manifold:

rkH(X) = rkH(d−1X [0, ε]). (26.3.10)
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This is so because the union of balls of radius ε centered at the points in X do
not have any holes that are not also present in the manifold. Indeed, d−1X [0, ε] is
homotopy equivalent to X, which is stronger than the claim about homology.

Comparison. The above two results differ in their assumptions on the space X
whose homology is inferred. The first result is sensitive to the weak feature size,
while the second result needs positive reach. We have reach(X) ≤ wfs(X), which
favors homology inference with stability. For example, if X is a manifold in Rn but
not smoothly embedded, then its reach is zero—which prevents homology inference
without using stability—while the weak feature size may very well be positive.

26.4 ALGORITHMS

Persistent homology owes a great deal of its popularity to the development of ef-
ficient algorithms. Edelsbrunner, Letscher, and Zomorodian [ELZ00] launched the
current line of research with the introduction of a fast algorithm, which we review
in this section together with various shortcuts, including optimizations of Chen and
Kerber [CK11], fast updates for time-varying persistence [CEM06], and a sample
of dualities in persistent homology [DMVJ11b].

GLOSSARY

Boundary matrix: a matrix representation of the boundary map. Given a
simplicial complex with mp p-simplices, the p-th boundary matrix is denoted
Dp[1..mp−1, 1..mp], with Dp[i, j] = 0 if σi is not a face of σj , and Dp[i, j] = (−1)k

if σj = [u0, u1, . . . , up] and σi is σj with uk removed.

Column operation: adding a multiple of one column to another. Similarly, a
row operation adds a multiple of one row to another. Given a matrix, M , we
write M [i, ·] for its i-th row and M [·, j] for its j-th column.

Pivot: the lowest non-zero element in a column, M [·, j], denoted pvtM [·, j]. The
row of the pivot is denoted lowM [·, j], with lowM [·, j] = 0 if the entire columns
is zero.

Reduced matrix: a matrix M in which the pivots are in distinct rows; that is:
lowM [·, j] 6= lowM [·, k] or lowM [·, j] = lowM [·, k] = 0 whenever j 6= k.

REDUCTION ALGORITHM

As described in Munkres [Mun84], the homology groups of a simplicial complex can
be computed by reduction of the boundary matrices. Similarly, we can compute the
persistent homology by matrix reduction, but there are differences. In persistence,
the ordering of the simplices is essential, and we do the reduction so it preserves
order. It is therefore convenient to work with a single matrix that represents the
boundary maps in all dimensions.

Filtered boundary matrix. Given a filtration, K0 ⊆ K1 ⊆ . . . ⊆ Km of a
simplicial complex, K = Km, in which consecutive complexes differ by a single
simplex, Ki = Ki−1 ∪ {σi}, we order the rows and the columns of the boundary
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matrix of K by the index of their first appearance. We call the resulting matrix D,
dropping the dimension subscript since the matrix combines all dimensions.

Column algorithm. Similar to Gaussian elimination, the following greedy al-
gorithm reduces the filtered boundary matrix D: it computes a decomposition
R = DV , in which the matrix R is reduced and the matrix V is invertible upper-
triangular.

R = D; V = I;
for each column R[·, j] from 1 to m do
while lowR[·, j] = lowR[·, k] 6= 0, with k < j do
c = pvtR[·, j]/ pvtR[·, k];
R[·, j] = R[·, j]− cR[·, k];
V [·, j] = V [·, j]− cV [·, k].

Observe that the algorithm works exclusively with left-to-right column operations.
Each such operation is a loop, so we have three nested loops, which explains why
the algorithm takes a constant times m3 operations in the worst case.

Persistence pairing. The reduced matrix, R, contains the persistence informa-
tion we are interested in. Specifically, the persistence module H(K0) → H(K1) →
. . .→ H(Km) contains an indecomposable summand I[i, j) iff lowR[·, j] = i. It con-
tains a summand I[i,∞) iff R[·, i] = 0 and there is no column j with lowR[·, j] = i.

Homology generators. While the indecomposable summands are encoded in the
reduced matrix, the corresponding generators of the homology groups are sometimes
stored in V and sometimes in R. Note that the algorithm maintains that R[·, j] is
the boundary of the chain V [·, j], for every j. If R[·, i] = 0, then V [·, i] is a cycle that
first appears in complex Ki. If there is no column R[·, j] with lowR[·, j] = i, then
V [·, i] is a generator of homology in the final complex K. In contrast, if lowR[·, j] =
i, then R[·, j] records a cycle that appears in Ki and becomes a boundary in Kj .
In other words, it is a homology generator in groups H(Ki) through H(Kj−1).

Uniqueness of pairing. Given D, the decomposition R = DV such that R is
reduced and V is invertible upper-triangular is not unique. However, any two such
decompositions have the same map, low, from the columns to the rows, including 0.
When reducing the boundary matrix, we can therefore perform column operations
in any order, as long as columns are added from left to right. Once the matrix is
reduced, it gives the correct persistence pairing.

Row algorithm. Since the columns can be processed in any order, we can use
an alternative reduction algorithm that processes the matrix row-by-row, from the
bottom up. Despite its name, the algorithm reduces the matrix using column
operations.

R = D; V = I;
for each row R[i, ·] from m back up to 1 do
C = {j | lowR[·, j] = i}; leftmost = minC;
for j ∈ C \ {leftmost} do
c = pvtR[·, j]/ pvtR[·, leftmost];
R[·, j] = R[·, j]− cR[·, leftmost];
V [·, j] = V [·, j]− cV [·, leftmost].

Unlike the column algorithm, which produces the pairs in the order of deaths (from
earliest to latest), the row algorithm produces the pairs in the order of births (from
latest to earliest). If we are only interested in the persistence pairing, the row
algorithm can discard columns once they have been used for the reduction. In



Chapter 26: Persistent Homology 15

other words, column R[·, leftmost] can be dropped after completing its inner for-
loop.

SHORTCUTS

For large complexes, even storing the full boundary matrix would be prohibitively
expensive. To cope, we tacitly assume a sparse matrix representation that focuses
on the non-zero elements. With this understanding, the above matrix reduction
algorithms are surprisingly efficient, namely much faster than the worst case, which
is a constant times m3 operations. Needless to say that fast is never fast enough,
and there is still much to be saved if we are clever about operations or exploit
special properties that sometimes present themselves.

Compression optimization. If column R[·, j] 6= 0 after reduction, then row
R[j, ·] can be set to zero. Indeed, the non-zero column witnesses that σj destroys a
cycle, therefore it cannot create one. In the column algorithm, it is convenient to
do this update on the fly: when processing column R[·, i], we can remove all those
elements whose (already reduced) columns in R are not zero.

Clearing optimization. If lowR[·, j] = i 6= 0 after reduction of the column,
then R[·, i] is necessarily 0. This is helpful in speeding up the row algorithm by
setting R[·, i] = 0 immediately after processing R[i, ·] and finishing with a non-
zero row. This optimization produces a significant speed-up in practice, but it
sacrifices matrix V . In other words, the optimized algorithm no longer computes
the decomposition R = DV , but only matrix R, which is sufficient to recover the
persistence pairing.

Fast algorithm for 0-dimensional persistence. Recall that both the row al-
gorithm and the column algorithm require a constant times m3 operations in the
worst case, in which m is the number of simplices in K. If we are interested only
in 0-dimensional persistence, we can take advantage of a faster algorithm that runs
in time at most a constant times m logm. The algorithm takes advantage of the
standard union-find data structure, which maintains a collection of disjoint sets
supporting the operation Find(i), which finds the lowest-value representative of
the set containing vertex i, and the operation Unite(i, j), which unites the sets
represented by i and j and, assuming i < j, makes i the new representative. The
initial sorting dominates the running time.

Updates after a transposition. A filtration that changes continuously over
time can be modeled as a sequence of transpositions of consecutive simplices. If
we switch the order of simplices σi and σi+1, the boundary matrix changes by a
transposition of the rows i and i + 1 and of the columns i and i + 1. Letting P
be the corresponding permutation matrix, the new matrix D′ = PDP . Performing
the same transposition in matrices R and V , we get matrices R′ = PRP and V ′ =
PV P , with R′ = D′V ′. But R′ is not necessarily reduced and V ′ is not necessarily
invertible upper-triangular. The latter condition can fail only if V [i, i + 1] 6= 0.
In this case, we can subtract a multiple of column V [·, i] from V [·, i + 1], before
the transposition, to ensure that V [i, i + 1] = 0. The former condition can fail
if (1) lowR[·, i] = lowR[·, i + 1] because of the update to matrix V , or (2) there
are two columns with lowR[·, k] = lowR[·, `] = i + 1. Both cases can be fixed by
subtracting the lower-index column from the higher-index column. In all cases, we
perform only a constant number of column operations, which implies that a single
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transposition takes time at most a constant times m.

Relative homology pairs and generators. Let K0 ⊆ K1 ⊆ . . . ⊆ Km be a
filtration of K = Km. Mapping every complex, Ki, to the relative homology of the
pair (K,Ki), we get a persistence module,

H(K,K0)→ H(K,K1)→ . . .→ H(K,Km−1)→ H(K,Km), (26.4.1)

which we denote as Hrel(K). Its decomposition into interval summands is closely
related to the decomposition of the module H(K). The intervals can be recovered
from the decomposition R = DV computed by either the row algorithm or the col-
umn algorithm. Specifically, Hrel(K) has a summand I[i, j) in (p+ 1)-dimensional
homology iff H(K) has the same summand in p-dimensional homology, which hap-
pens iff lowR[·, j] = i. In this case, V [·, j] is the generator of the relative homology
class. Module Hrel(K) has a summand I[0, i) in p-dimensional homology iff mod-
ule H(K) has a summand I[i,∞) in p-dimensional homology, which happens iff
R[·, i] = 0 and there is no j with lowR[·, j] = i. In this case, V [·, i] is the generator
of the relative homology class.

26.5 ZIGZAG PERSISTENCE

Persistent homology fits naturally in the theory of quiver representations, where we
view a discrete persistence module as a representation of the so-called An quiver,
a path with n vertices. The theory implies that it is not important that all linear
maps point in the same direction. Instead, they may alternate, and the resulting
sequence still decomposes into interval summands. Carlsson and de Silva [CD10] in-
troduced the connection between persistence modules and quiver representations to
the computational topology community under the name of zigzag persistence. For
technical reasons, we work with Steenrod homology throughout this section, which
is a homology theory equipped with an axiom that ensures the Mayer–Vietoris
sequences are exact for arbitrary spaces. Furthermore, we assume that all homol-
ogy groups are finite, and that all functions have finitely many critical values. In
the case of finite simplicial complexes, Steenrod homology agrees with simplicial
homology, and all the piecewise-linear functions have a finite number of critical
values.

GLOSSARY

Zigzag filtration: a discrete sequence of topological spaces, (Xi)i>0, such that
Xi ⊆ Xi+1 or Xi ⊇ Xi+1 for every i. Its type is the sequence of symbols (τi)i>0,
with τi ∈ {→,←}, such that τi =→ implies Xi ⊆ Xi+1 and τi =← implies
Xi ⊇ Xi+1.

Zigzag persistence module: a sequence of vector spaces over a field F connected
by linear maps f i+1

i : Ui → Ui+1 if τi =→ and f ii+1 : Ui+1 → Ui if τi =←. We
denote such a module by U = (Ui, f), always assuming that the type is clear
from the context. We call U a zigzag interval module if there exists an interval
[k, `] such that Ui = 0 whenever i < k or ` < i, Ui = F whenever k ≤ i ≤ `,
and a linear map is zero if either the source or the target are zero, and it is the
identity otherwise. We denote this zigzag interval module as I[k, `].
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Zigzag interval decomposition: a zigzag persistence module decomposes as a
direct sum of zigzag interval modules of the matching type, U = ⊕jI[kj , `j ]. As
with ordinary persistence modules, this means we can select elements urj in each
vector space Ur, such that the nonzero elements form a basis of Ur, and the maps
diagonalize with respect to the bases, i.e., fsr (urj) = usj whenever urj 6= 0.

Relative Mayer–Vietoris long exact sequence: a long exact sequence asso-
ciated to the relative homology groups of two nested pairs of spaces. Specifically,
given two pairs of spaces, (U,A) and (V,B), with A ⊆ U and B ⊆ V, the sequence

· · · → Hp+1(U ∪ V,A ∪ B)→ Hp(U ∩ V,A ∩ B)→ Hp(U,A)⊕ Hp(V,B)→
Hp(U ∪ V,A ∪ B)→ Hp−1(U ∩ V,A ∩ B)→ . . . , (26.5.1)

in which the middle two maps are induced by inclusions, is long exact.

LEVEL SET ZIGZAG

There is a natural zigzag associated to a real-valued function. One can view it as
sweeping the level sets of the function from bottom to top. The construction was
first introduced and studied by Carlsson et al. [CDM09].

Level set zigzag. Given a real-valued function f : X → R with critical values
s0 < s1 < . . . < sm−1 and an interleaved sequence of regular values −∞ = r0 <
s0 < r1 < . . . < sm−1 < rm =∞, we denote by Xi+1

i = f−1[ri, ri+1] the pre-image
of the interval [ri, ri+1]. We call the strictly alternating zigzag filtration,

X1
0 ⊇ X1

1 ⊆ X2
1 ⊇ . . . ⊆ Xm−1m−2 ⊇ Xm−1m−1 ⊆ Xmm−1, (26.5.2)

a level set zigzag filtration of f . Its type is ←→←→ . . . ←→←→. Passing to
homology, we get the corresponding level set zigzag persistence module,

H(X1
0)← H(X1

1)→ . . .← H(Xm−1m−1)→ H(Xmm−1), (26.5.3)

which is unique up to isomorphism.

Mayer–Vietoris pyramid. We can arrange pairs of pre-images of the function
in a grid, as shown in Figure 26.5.1, called the Mayer–Vietoris pyramid . The nodes
of the grid are pairs of spaces: (X`k, ∅) in the bottom quadrant, (X`0,Xk0) in the left
quadrant, (Xmk ,Xm` ) in the right quadrant, (X,Xk0 ∪ Xm` ) in the top quadrant.

Distinguished paths. Several paths through the Mayer–Vietoris pyramid have
natural interpretations. The zigzag filtration along the bottom edge is the level set
zigzag (26.5.2). The major diagonal, running from the bottom-left to the upper-
right corner, and the minor diagonal, running from the bottom-right to the upper-
left corner, have the following sequences of spaces:

∅ ⊆ X1
0 ⊆ . . . ⊆ Xm0 = X ⊆ (X,Xmm−1) ⊆ . . . ⊆ (X,Xm0 ) = (X,X), (26.5.4)

∅ ⊆ Xmm−1 ⊆ . . . ⊆ Xm0 = X ⊆ (X,X1
0) ⊆ . . . ⊆ (X,Xm0 ) = (X,X). (26.5.5)

These are the extended filtrations of f and −f .

Sub-diagrams of extended persistence. We distinguish between three sub-
diagrams of the extended persistence diagram. Ordp(f) comprises the p-dimensional
classes whose birth and death occur in absolute homology; Relp(f) comprises the
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FIGURE 26.5.1
The Mayer–Vietoris pyramid. The two diagonals carry the extended persistence of f and −f . The
pairs at the corners of every diamond satisfy the relative Mayer–Vietoris long exact sequence. The
boundary map from the top row to the bottom row extends the square and turns the entire diagram
into a Möbius strip.

classes whose birth and death occur in relative homology; Extp(f) comprises the
classes born in absolute but dying in relative homology. They are referred to as the
ordinary, the relative, and the extended sub-diagrams of Dgm(Hext(f)).

Mayer–Vietoris diamond. For every two pairs connected by a monotonically
rising path in the grid, the lower pair includes into the upper pair. Moreover,
any four pairs at the corners of a rectangle have a special property which we now
explain; see Figure 26.5.1. The intersection of the left and right corners (as pairs of
spaces) gives the bottom corner, and their union gives the top corner. For the spaces
chosen in the figure, we have (X`k, ∅) = (X`0 ∩ Xmk ,Xk0 ∩ Xm` ) and (X,Xk0 ∪ Xm` ) =
(X`0 ∪ Xmk ,Xk0 ∪ Xm` ). This is true for all rectangles, independent of whether their
corners lie in different quadrants or not. This property ensures that the homology
groups of any four such spaces can be arranged in the relative Mayer–Vietoris long
exact sequence, which lends its name to the pyramid.

Infinite strip. Passing to homology, the pyramid of spaces unrolls into an (in-
finite) strip of homology groups. The top edge of the pyramid in homological
dimension p connects to the bottom edge in dimension p−1 via the boundary map,
Hp(X,Xi0 ∪ Xmi+1)→ Hp−1(Xii)⊕ Hp−1(Xi+1

i+1).

DECOMPOSITION

An important property of the Mayer–Vietoris pyramid of homology groups is its
decomposition into one-dimensional summands; see [CDM09, BEMP13]. It implies
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that the full pyramid contains exactly the same information as the level set zigzag
or extended persistence, and we can infer the homology of any interlevel set, as well
as the rank of any map between any pair of interlevel sets, from the decomposition
of the level set zigzag.

Flush diamonds. We distinguish a special shape inside the pyramid unrolled into
an infinite strip, which we refer to as a flush diamond. It consists of all grid nodes
inside a rectangle with sides running at 45◦ angles, and whose left and right corners
are flush with pyramid sides. A flush diamond indecomposable is a pyramid that
consists of zero vector spaces outside a flush diamond and of one-dimensional vector
spaces, connected by identity maps, inside the diamond. Figure 26.5.2 illustrates
the supports of four such indecomposables in the pyramid.

+1

+1

+1
+1

FIGURE 26.5.2
Flush diamonds in the Mayer–Vietoris pyramid that correspond to the four different types of inter-
vals in the levelset zigzag.

Pyramid decomposition and restrictions. Any pyramid of homology groups
with the Mayer–Vietoris structure decomposes as a direct sum of flush diamond
indecomposables. Because flush diamond indecomposables restrict uniquely to the
levelset zigzag, we can recover the decomposition of the entire pyramid from the
decomposition of the zigzag. Therefore, we can read off the dimension of any
(absolute or relative) homology group of the pre-image of any interval from the
decomposition of the levelset zigzag. Furthermore, we can read off the rank of
any map between any two such groups from the same decomposition. All zigzags
that span the entire pyramid have this property, so we can recover all of the above
structures from the decomposition of any other path through the pyramid—for
example, from the extended persistence.

Symmetry of extended persistence. Because the two diagonals of the pyramid
correspond to the extended persistence of functions f and −f , the decomposition of
the pyramid into diamonds relates the indecomposables of the two functions. The
following theorem relates the three sub-diagrams for f and −f ; its statement and
proof follow from Figure 26.5.2.

THEOREM 26.5.1 Symmetry Theorem

Given a function f : X → R, the ordinary, relative, and extended persistence sub-
diagrams of f and −f are related as follows:

Ordp(f) = Rel0p+1(−f), (26.5.6)

Extp(f) = ExtRp (−f), (26.5.7)

Relp(f) = Ord0
p−1(−f), (26.5.8)

in which the superscript 0 denotes the central reflection through the origin, (x, y) 7→
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(−x,−y), in the diagram as drawn in Figure 26.3.1. Similarly, the superscript R
denotes the reflection across the minor diagonal, (x, y) 7→ (−y,−x).

26.6 APPLICATIONS

Persistent homology is extraordinarily versatile, contributing to numerous questions
in a variety of directions. In this section, we showcase the application of persistent
homology to two particular topics. Following [DMVJ11a], we use persistence to
write data in circular coordinates. Sketching results in [EP16], we show how per-
sistent homology can be used to obtain converging Crofton-type formulas for the
intrinsic volume of not necessarily convex shapes.

CIRCLE-VALUED COORDINATES

Machine learning offers a variety of methods to understand high-dimensional data.
A popular class of techniques reduces the dimension by mapping a point set from
high- to low-dimensional space, e.g., given X ⊆ Rn, find f : X → Rd with d = 2
or 3. How can we exploit topological constraints, such as the persistent homology
of X in Rn? Consider the group of homotopy classes of continuous maps from
a space to the circle, denoted [X,S1]. A classical equation in homotopy theory
relates this group to the 1-dimensional cohomology group of the space, a dual of
the 1-dimensional homology group, computed with integer coefficients:

[X,S1] = H1(X,Z). (26.6.1)

If we detect prominent 1-dimensional (co)cycles in the data, we can turn them into
circle-maps. This idea is due to de Silva et al. [DMVJ11a], who propose to compute
the persistence diagram of a filtration built on the input point sample, to select a
persistent cohomology class, and to turn it into a circle-valued map. A distinctive
feature of this method is that it can detect different homotopy classes of such maps
and find the smoothest representative within any class. Specifically, de Silva et al.
propose the following algorithm:

1. Build a Vietoris–Rips filtration, Rips(X), of the data. Let k be prime, use
persistent cohomology to find a significant cohomology class in the filtration,
and select its generator in a particular complex [αk] ∈ H1(Ripsr(X),Zk).

2. Lift [αk] to a cohomology class with integer coefficients, [α] ∈ H1(Ripsr(X),Z).

3. Smooth the integer cocycle to a harmonic cocycle in the same cohomology
class, ᾱ ∈ C1(Ripsr(X),R).

4. Integrate the harmonic cocycle ᾱ to a circle-valued function, g : Ripsr(X)→
S1, which restricts to a circle-valued function on the data, f : X → S1.

Figure 26.6.1 shows the two maps for a point sample of a figure-8.

INTRINSIC VOLUMES

We begin with a discussion of the convex case, which is well understood and contains
some of the most beautiful theorems in geometry. Given a convex body, K ⊆ Rn,
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FIGURE 26.6.1
Two circle-valued parameterizations of a sample of a figure-8. The hue of the points is set to the
circle coordinate. The arrows indicate the circle along which the coordinate varies smoothly.

we write Kr for the Minkowski sum with the ball of radius r ≥ 0, and we recall
the Steiner polynomial of degree n, which gives the n-dimensional volume of the
thickened body:

Vol(Kr) =

n∑
p=0

bpVn−p(K) · rp. (26.6.2)

There are n + 1 coefficients, each the product of the p-dimensional volume of the
unit ball in Rp, bp, and the (n − p)-th intrinsic volume of K, Vn−p(K). In R3,
the intrinsic volumes are a constant times the volume, surface area, total mean
curvature, and total Gaussian curvature. Hadwiger’s Characterization Theorem
asserts that every measure on convex sets that is invariant under rigid motions,
additive, and continuous is a linear combination of the intrinsic volumes [Had52].
The Crofton Formula provides an integral geometric representation of the intrinsic
volume. Writing Lnp ⊆ Enp for the linear and affine Grassmannians, namely the
p-dimensional linear and affine subspaces of Rn, it asserts that

Vn−p(K) = cp,n

∫
E∈Enp

χ(K ∩ E) dE, (26.6.3)

for 0 ≤ p ≤ n, in which χ(K∩E) is the Euler characteristic of the intersection, and
cp,n =

(
n
p

)
bn

bpbn−p
. The right-hand side of Crofton’s Formula makes sense also for

non-convex sets and can thus be used to generalize the concept of intrinsic volumes
beyond convex bodies. Indeed, even the Steiner polynomial extends, albeit only
to bodies with positive reach, for which it gives the correct volume for sufficiently
small values of r; see e.g. the tube formulas of Weyl [Wey39].

While Crofton’s Formula is invariant under rigid motion and additive also for
non-convex bodies, it is not necessarily continuous. To see this, let X = B(0, 1) be
the unit disk in R2 and recall that the length of its boundary is 2π. Writing rZ2

for the scaled integer grid in the plane, we approximate X by the union of squares
centered at grid points inside X:

Xr =
⋃

(ri,rj)∈X

[ri− r
2 , ri+ r

2 ]× [rj − r
2 , rj + r

2 ]. (26.6.4)

The total length of the left-facing edges bounding Xr varies between 2−r and 2+r,
and so do total lengths of the right-facing, up-facing, and down-facing edges. It
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follows that the length of the boundary of Xr converges to 8 as r goes to 0. But 8 is
not 2π. While the Crofton Formula does not converge to the correct value, we can
modify it to do so. To this end, we rewrite the first intrinsic volume as an integral
over level set moments:

V1(X) = cn−1,n

∫
E∈Enn−1

χ(X ∩ E) dE (26.6.5)

= cn−1,n

∫
L∈Ln

n−1

∫ ∞
y=−∞

χ(f−1L (y)) dy dL (26.6.6)

= cn−1,n

∫
L∈Ln

n−1

Mχ(FL) dL, (26.6.7)

in which fL : X→ R is the height function in direction normal to L, FL = Hext(fL),
and Mχ(FL) is the level set moment of FL. For ε ≥ 0, we define Mχ(FL, ε) by
ignoring contributions of persistence ε or less. Finally, we define the modified first
intrinsic volume of X ⊆ Rn and ε ≥ 0 as

V1(X, ε) = cn−1,n

∫
L∈Ln

n−1

Mχ(FL, ε) dL. (26.6.8)

Choosing ε equal to the length of the cube diagonal, we can prove that the thus
defined modified first intrinsic volume of the approximating body, V1(Xr, r

√
n),

differs from V1(X) by at most some constant times r and therefore converges to the
correct first intrinsic volume for compact bodies X whose boundaries are smoothly
embedded (n− 1)-manifolds in Rn; see [EP16]. At the time of writing this article,
such a convergence result was not known for all intrinsic volumes. The first open
case is the surface area of bodies in R3, that is: n = 3 and p = 1.

26.7 SOURCES AND RELATED MATERIAL

The literature directly or indirectly related to persistent homology is extensive, and
we had to make choices. Since this chapter does not focus on applications—which
are numerous—we have touched the body of applied literature only tangentially.

BOOKS AND SURVEY ARTICLES

There are many textbooks in algebraic topology available, including Hatcher [Hat02]
just to mention one. Of these, very few say anything about computations. In
contrast, there are only three books in total that say anything about persistent
homology, and the first two are heavily computational.

[Zom05]: a slightly modified version of the author’s doctoral thesis.

[EH10]: an introductory text in computational topology, with a heavy focus
on persistent homology.

[Ghr14]: a text on applied topology, which includes a few sections on persis-
tent homology.
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[Oud15]: a monograph on persistence, covering foundations as well as appli-
cations.

There are five survey articles on the topic of persistent homology available to aid
in the introduction of non-experts into the field.

[Ghr07]: discusses the concept of the topology of data, focusing on the barcode
as a concrete expression thereof.

[EH08]: surveys the state-of-the-art in 2008, giving weight to algorithms com-
puting persistent homology.

[Car09]: takes a more abstract approach and conveys his vision of topology
and data.

[Wei11]: gives a brief introduction to persistent homology addressing the
mathematics community at large.

[EM12]: surveys the field in 2012, stressing the dichotomy and interplay be-
tween theory and practice.
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