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Abstract. Persistent homology is a recent grandchild of homology that has found use in
science and engineering as well as in mathematics. This paper surveys the method as well
as the applications, neglecting completeness in favor of highlighting ideas and directions.
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1. Introduction

Built on a sequence of spaces and the corresponding homology groups with homo-
morphism between them, persistence assesses the interval within which a homology
class contributes. Among other situations, this ability is useful when a space is
not fixed but depends on the scale of the observation, which is a common sce-
nario in the sciences. After a brief review of the historical development, we sketch
characteristics of the method.

History. Like many other concepts in mathematics, persistent homology has a
beginning but also a historical root system that comes into sight when we increase
the resolution of the inquiry. This is precisely what persistent homology does for
a much more general class of spaces: it synthesizes the different views as aspects
into a single consistent reality that spans a range of scales. We mention three
main historical tracks in the root system of persistent homology. In 1990, Patrizio
Frosini and collaborators introduced size functions, a formalism that is equivalent
to 0-dimensional persistent homology [24]. The main direction of the pursuant
work is on shape analysis and its applications in computer vision and medical
imaging; see a recent survey [4]. In 1999, Vanessa Robins studied the homology
of sampled spaces and described the images of homomorphisms induced by in-
clusions as persistent homology groups [39]. In 2000, Edelsbrunner, Letscher and
Zomorodian independently introduced persistent homology together with a fast
algorithm and the diagram [22], as we will discuss later. Both of these works were
inspired by the computational notion of alpha shapes [21, 23] and the related Betti
number algorithm [16]. Within mathematics, there is a distinct relationship with

∗This research is partially supported by NSF under grant DBI-0820624, by ESF under the
Research Networking Programme, and by the Russian Government Project 11.G34.31.0053.
†This work is partially supported by the DOE Office of Science ASCR under award number

KJ0402-KRD047 and contract number DE-AC02-05CH11231.



2 Herbert Edelsbrunner, Dmitriy Morozov

spectral sequences, originally introduced in 1946 by Jean Leray [34]. Motivated
by its significant applications, persistent homology has found repeated exposure in
the popular mathematics literature [5, 27, 45] and features prominently in a recent
text on computational topology [20].

Perspectives. In a nutshell, persistent homology expands the relationship be-
tween a topological space and its homology groups to that between a function and
its persistence diagram. The latter relationship gives rise to a rich theory which
invites different perspectives if studied with different mind-sets.

Mathematics: We see an extension of the algebraic theory of homology forming
a bridge to measure theory. The extension is inspired by Morse theoretic
reasoning taken to the algebraic level of homology groups connected by maps.

Computation: The persistent homology groups are computed by reducing the
boundary matrices of complexes. Indeed, all algebraic relationships have
parallels in the matrix representation.

Applications: The matrices give fast algorithms and the algebra leads to scale-
dependent measurements of spaces. Importantly, these measurements are
stable, they can be used to compare and analyze shapes, and they can be
exploited to repair faulty topology.

Depending on the interest, we focus on different aspects of the method. We present
the material in two main sections, first explaining the theoretical framework of
persistent homology, and second sketching four applications selected to highlight
different aspects of the theory.

2. The Theory

In this section, we discuss the mathematical and computational representation
of topological spaces, the algebra obtained by applying the homology functor,
the implications of this construction to measuring topology, and algorithms that
compute the groups in this algebra.

2.1. Spaces and Functions. Persistent homology is applied to a filtered space
or, equivalently, to the sequence of sublevel sets of a real-valued function on this
space. We discuss how to extract both ingredients, a space and a function, from
different kinds of data.

Data. Sometimes the data already comes as a real-valued function, such as digital
images. They are usually laid out on a regular integer grid, in which every cell
records the locally averaged intensity value of the measured light field. Most
common are 2D images in which the cells are squares, but also time-series of 2D
images and 3D images are widely used. Indeed, digital images form one of the
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most important classes of data as they are inexpensive to acquire and they probe
nature in exquisite detail.

Another prevailing form of input data are point clouds, finite subsets of some
ambient space, most often Euclidean. Each point represents a sequence of mea-
surements of an individual in a population. We typically want to understand the
overall shape of the cloud, for example, by measuring the topology of the space we
get by thickening each point to a ball and taking the union. Equivalently, we may
introduce the distance function that maps each point of the ambient space to its
distance from the nearest data point. Letting α be the radius of the balls, we get
the union as the sublevel set, defined as the set of points with function value at
most α. A crucial property of this construction is its stability: if the input data
follows an underlying law that appears as a shape in the ambient space, then the
function we construct is close to the distance function defined by that shape and
thus facilitates the study of the latter.

A third class of input data are shapes, subsets of ambient space that satisfy
regularity conditions of one kind or another. A common subclass consists of sur-
faces in R3, e.g., obtained by collecting points on the boundary of a solid object
with a 3D scanner and connecting the points to a surface by interpolation. As in
the point cloud case, the function is typically constructed in a second step, per-
haps to highlight or define features of the shape, such as protrusions or cavities.
In the case of a surface, popular such functions are the mean and the Gaussian
curvature, as well as the eccentricity [30]. There are plenty of other possibilities
— with special constructions for special purposes — such as the elevation function
defined in terms of the persistent homology of the 2-parameter family of height
functions in R3 [1].

Complexes. Following a long-standing tradition in topology, we work with com-
plexes to represent continuous spaces. Common examples are CW-, cubical and
simplicial complexes, to name a few. Cubical complexes have already been men-
tioned as the basis of digital images. They consist of cubes of various dimensions,
with the requirement that with every p-cube, the complex also contains the 2p
(p− 1)-cubes that are its faces. Significant improvements in the efficiency of com-
putations are gained if we store cubical subdivisions hierarchically, such as in quad-
and oct-trees [40]. The CW- and simplicial complexes are extreme examples on op-
posite ends of the spectrum. The CW-complexes allow for complicated cells glued
to each other in complicated ways and thus facilitate representations of spaces with
only a few cells. In contrast, all cells in a simplicial complex are simplices, and any
two are glued along a single shared face or not at all. In spite of the frequently
required large number of simplices, the local simplicity of these complexes lends
itself to efficient computations.

Every simplicial complex has an abstract and a geometric side, and it is useful to
fully exploit both. Take, for example, the nerve of a finite collection of convex sets;
that is: the system of subcollections with non-empty common intersection. This
is an abstract simplicial complex since every collection U in the nerve implies the
membership of the subsets of U . A particularly useful collection of convex sets are
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the Voronoi cells of a finite set of points in Rn [43]. Assuming general position, the
maximum number of Voronoi cells with non-empty common intersection is n+ 1.
In this case, the nerve has a natural geometric realization, known as the Delaunay
triangulation of the points in Rn [15]. Specifically, for each U in the nerve of the
Voronoi cells, the Delaunay triangulation contains the convex hull of the points
whose Voronoi cells are in U . This simplicial complex supports computations of
the Euclidean distance function defined by the points. Indeed, the sublevel set of a
threshold α > 0 is a union of balls of radius α, one around each point. Intersecting
each ball with the corresponding Voronoi cell gives another collection of convex
sets, and its nerve is isomorphic to a subsystem of the nerve of the Voronoi cells.
Its geometric realization is known as the α-complex [21, 23], which is, of course, a
subcomplex of the Delaunay triangulation.

There are many situations in which the Delaunay triangulation is not defined,
or we cannot afford to compute it. A popular alternative is the Vietoris-Rips
complex, which exists whenever we have the distances between pairs of points.
Given a threshold a > 0, this complex contains a simplex spanned by p+ 1 points
iff every two of these points are at distance at most a from each other. Equivalently,
the Vietoris-Rips complex for parameter a is the flag complex built on the set of
edges with length at most a.

2.2. Algebra. The classic theory of homology maps a topological space to an
abelian group which, in the case of coefficients in a field, is a vector space. Having
a filtered space, we get a sequence of vector spaces, together with linear maps
induced by inclusion. This is the basic set-up for persistent homology, which we
now describe.

Homology. The theory of homology is a classic subject within algebraic topol-
ogy, which is described in most of the standard texts, including Munkres [38] and
Hatcher [28]. The construction begins with a chain group, Cp, whose elements are
the p-chains, which for a given complex are formal sums of the p-dimensional cells.
The boundary homomorphism, ∂p : Cp → Cp−1, maps each p-chain to the sum of
the (p − 1)-dimensional faces of its p-cells, which is a (p − 1)-chain. Writing the
groups and maps in sequence, we get the chain complex :

. . .
∂p+2−→ Cp+1

∂p+1−→ Cp
∂p−→ Cp−1

∂p−1−→ . . . (1)

The kernels and the images of the boundary homomorphisms are the cycle and
the boundary groups. A fundamental property of the boundary homomorphism is
that its square is zero, ∂p ◦ ∂p+1 = 0. Therefore, for every p, the boundaries form
a subgroup of the cycles, and we can take the quotient, which gives a group whose
elements are classes of homologous cycles. This is the p-th homology group, denoted
as Hp, where p is again the dimension. We assume coefficients in a field, F, so that
Hp = F⊕ F⊕ . . .⊕ F = Fβp is a vector space over F, with βp = rankHp known as
the p-th Betti number. For a topological space, X, we write Hp(X) and βp(X) for
its p-th homology group and Betti number. They are defined for every integer, p,
but if the dimension of X is n, then the only possibly non-trivial homology groups
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are for 0 ≤ p ≤ n. Accordingly, we have βp = 0 unless 0 ≤ p ≤ n. To simplify
the notation, we will often suppress the dimension and write H(X) =

⊕
p Hp(X)

for the direct sum.
Let X0 ⊆ X be a topological subspace. Every cycle in X0 is also a cycle in X,

although it may be trivial in the latter without being trivial in the former. The
inclusion of X0 in X induces a linear map on the homology groups, ϕ : H(X0) →
H(X). We will also consider the pair of spaces, (X,X0), whose (relative) homology
is obtained by identifying cycles that differ only inside X0. We have again a linear
map induced by inclusion, ψ : H(X) → H(X,X0). Furthermore, there is a third
linear map, D : H(X,X0)→ H(X0), such that

. . .
Dp+1−→ Hp(X0)

ϕp−→ Hp(X)
ψp−→ Hp(X,X0)

Dp−→ Hp−1(X0)
ϕp−1−→ . . . (2)

is exact, by which we mean that the image of every map is the kernel of the next
map. This particular sequence is the exact sequence of the pair (X,X0). It is
a compact expression of how the relative homology of the pair is related to the
(absolute) homology of the two spaces.

Filtrations. The basic set-up for persistent homology consists of a filtered space,
a nested sequence of subspaces that begins with the empty and ends with the
complete space [22, 48]. Writing ∅ = X0 ⊆ X1 ⊆ . . . ⊆ Xm = X, we apply the
homology functor, which for each space gives a vector space and for each inclusion
gives a linear map:

0 = H(X0)→ H(X1)→ . . .→ H(Xm) = H(X), (3)

referring to this sequence as a persistence module. It is instructive to split the
module into indecomposable summands of the form 0→ F→ . . .→ F→ 0, where
every nonzero map is the identity. There is a unique such decomposition whose
direct sum gives the original module. Each summand can be interpreted as the
birth of a homology class at its first non-zero term and the death of the same
class right after its last non-zero term. More precisely, the summand represents
an entire coset of classes that are born and die together, but we prefer to simplify
language by talking about generators. It should be clear that the module above is
not necessarily exact. In fact, it is exact iff each summand is of the form 0→ F→
F→ 0, consisting of precisely two non-zero terms. Of particular significance is the
length of a summand, which measures the duration of the corresponding class. We
refer to it as the persistence of the homology class. When a filtration results from
a function, we often define persistence not as the number of non-zero terms but
rather as the absolute difference between the function values at the birth and the
death. A related concept are the persistent homology groups, which are the images
under the composition of the linear maps. For example, the image of H(Xi) in
H(Xj) is such a group, and its rank is the number of indecomposable summands
whose births happen at or before H(Xi) and whose deaths happen after H(Xj).

Since (3) ends with a possibly non-trivial group, some homology classes may
never die. We set the value at the death to ∞, but doing so deprives us of a
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meaningful measure of the duration of such a class. Alternatively, we may add
relative homology classes constituting a second pass:

0 = H(X0)→ . . .→ H(Xm)→ H(X,Xm)→ . . .→ H(X,X0) = 0, (4)

where Xi is the closure of X − Xi. This is the extended persistence module as
introduced in [12]. Decompositions into summands, births, and deaths are defined
as before. Now every class that is born also dies. We distinguish between three
kinds: classes that are born and die during the first pass, classes that are born
during the first pass and die during the second pass, and classes that are born and
die during the second pass. The second kind comprises all classes of the entire
space, X, which are precisely the ones that were born but did not die in (3).

Beyond homology groups, the above decomposition holds for any linear se-
quence of vector spaces. In this context, we note the connection between persis-
tence and quiver representations observed in [6]. A fundamental result for quiv-
ers states that the orientation of maps between vector spaces does not affect the
structure of the indecomposable summands [17]. This implies that a module can
be replaced by a sequence in which any two contiguous vector spaces are con-
nected by a map — either from left to right, or from right to left. Such generalized
sequences, referred to as zigzag modules, elucidate the relationship between the
extended persistence and the homology of interlevel sets of scalar functions [7].

2.3. Measuring. The persistence of a homology class is the length of the in-
terval that supports it. The connection to applications is that the persistence
measurement carries useful information about spaces, functions, and data. A par-
ticularly useful property of this measurement is its stability under perturbations
of the function, as we explain in this section.
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Figure 1. Left: the height function with six critical points on a topological sphere. We
also show five interleaving level sets and highlight one sublevel set. Right: the persistence
diagram with two finite and two infinite points. The wedge anchored at (x, 0) contains
two points labeled 0 and one point labeled 1, implying that the highlighted sublevel set
has β0 = 2 and β1 = 1. Below: the barcode representation of the same information.
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Persistence diagrams. The splitting into indecomposable summands suggests
a combinatorial representation as a multi-set of points in the extended 2-dimensional
plane. Let f : X → R be continuous. With a minor modification of the original
construction, we build this multi-set by adding a copy of the point 1

2 (y+ x, y− x)
for each summand with birth at x and death at y; see Figure 1. We refer to this
multi-set as the persistence diagram of the function f , denoting it as Dgm(f), or
as Dgmp(f) if it is restricted to classes of dimension p. Instead of the points in
the plane, we sometimes draw the intervals defined such that a point u ∈ Dgm(f)
is contained in a wedge anchored at (x, 0) iff x is contained in the interval of u;
see Figure 1. The multi-set of such intervals is the barcode of the function f . Us-
ing this wedge, we can determine the Betti numbers of the corresponding sublevel
set simply by counting the points of the diagram it contains. More generally, the
points of the diagram contained in the wedge anchored at 1

2 (y+x, y−x) determine
the rank of the persistent homology group defined by the inclusion of the sublevel
set for x in the sublevel set for y.

Some modifications are in order if we substitute the extended module (4) for
the ordinary module (3). Since we get each value twice, we get a multi-set in a
double covering of the plane. As a benefit of the complication, we can read the
ranks of the persistent homology groups of all sublevel and superlevel sets as well
as of all level and interlevel sets of the function; see [7].

Stability. To compare the diagrams of two functions, f, g : X→ R, we may use
the Wasserstein distance between them, which is defined as the q-th root of the
infimum, over all matchings between the points, of the sum of q-th powers of the
edge lengths:

Wq(Dgm(f),Dgm(g)) = inf
γ

 ∑
u∈Dgm(f)

‖u− γ(u)‖q∞

 1
q

, (5)

where q is a positive real number; see e.g. [42]. In the limit, for q going to infinity,
we get the bottleneck distance, which is the length of the longest edge in the best
matching. For these definitions to make sense, we add infinitely many copies of
every point on the horizontal axis to the diagrams; they guarantee that there
are bijections between the multi-sets. An important property of the bottleneck
distance is its stability with respect to perturbations. Specifically, we have

W∞(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞, (6)

whenever f and g are both tame, by which we mean that they have only finitely
many critical values, and all sublevel sets have finite rank homology groups. This
is the Bottleneck Stability Theorem first proved in [11]. A word of caution is in
order: (6) implies that the critical value pairs that define the points in the diagram
are stable, but it does not imply that the critical values or the critical points are
stable. In fact, they are not.

While the bottleneck distance leads to a very general stability result, it has
drawbacks in practice because it is sensitive to only the worst edge in the best
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matching. The other Wasserstein distances do not imply stability for quite as
general a class of functions, but they do so for interesting classes, such as for
Lipschitz functions [13]. A different extension of the stability result — from tame
functions to parametrized families of vector spaces — appears in [10].

2.4. Computation. An alternative to the algebraic description of homology
based on chain complexes is the computational description based on boundary
matrices. The algorithms form the bridge that connects the rich field of algebraic
topology with applications, as discussed in Section 3.

Matrices and ranks. The p-th boundary matrix, denoted as Dp, is a compu-
tationally convenient representation of the p-th boundary homomorphism, ∂p. Its
columns are indexed by the p-dimensional cells, its rows by the (p−1)-dimensional
cells, and Dp[i, j] stores the coefficient of the i-th (p−1)-cell in the boundary of the
j-th p-cell. Recall that a p-chain is a formal sum of p-cells. Writing it as a column
vector, c, we can multiply with the matrix to get its boundary, Dpc, again written
as a column vector. By construction, the column space of Dp is isomorphic to the
group of (p − 1)-boundaries. Similarly, the null space of Dp is isomorphic to the
group of p-cycles. Since the p-th homology group is the quotient of the p-th cycle
group over the p-th boundary group, we get its rank as the dimension of the null
space of Dp minus the dimension of the column space of Dp+1. To compute these
dimensions, we put the boundary matrices into normal form in which an initial
segment of the diagonal contains 1’s while the rest of the matrix is zero. To do
this, we use elementary row and column operations:

1. exchange two rows or two columns;

2. add a row to another row or a column to another column;

3. multiply a row or a column with a coefficient from the field.

Similar to Gauss-Jordan elimination, we apply these operations to move a 1 to
the upper-left corner and to zero out its row and its column. The normal form
is then completed by recursing on the smaller matrix obtained by removing the
lead row and the lead column. Of course, the recursion halts when the remaining
matrix is empty or zero. The row operations can be summarized by multiplying
the boundary matrix from the left, and the column operations by multiplying from
the right. This gives Np = Up−1DpVp, where Np is the matrix in normal form,
which provides all the information we need:

zp = #zero columns in Np = rank of null space;

bp = #non-zero columns in Np+1 = rank of column space;

βp = zp − bp = rank of homology group.

The auxiliary matrices, Up−1 and Vp, provide additional information, which is
sometimes useful. In particular, the last zp columns of Vp give a basis of the p-th
cycle group, and the first bp−1 columns of the inverse, U−1p−1, give a basis of the
(p− 1)-st boundary group.
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Preserving order. We can do more with less: we can compute homology as
well as persistence while stopping short of reducing the boundary matrix to normal
form. To describe how this works, we put all boundary information into a single
matrix, D. We assume that the topological space is constructed one cell at a time,
making sure that each cell is preceded by its faces. Denoting the corresponding
ordering of the cells by σ1, σ2, . . . , σm, D[i, j] is the coefficient of σi in the boundary
of σj . We reduce D with a subset of the column operations, refraining from
exchanging columns and adding columns from left to right. The algorithm pays
special attention to the lowest non-zero entry in each column, which we may assume
is 1. If all lowest 1s appear in distinct rows, then the matrix is reduced. To get
D into this form, we iterate through the columns from left to right, reducing each
column by subtracting multiples of conflicting preceding columns. The greedy
nature of the process ensures that the resulting matrix is reduced. As before, we can
express the operations as a multiplication with another matrix: R = DV , where
R is reduced and V is invertible and upper-triangular. While this decomposition
is not unique, the lowest 1s in R are unique [14]. We get all information from
their number and their locations within the reduced matrix. Similar to before, the
number of zero columns that belong to p-cells is the rank of the p-th cycle group,
and the number of lowest 1s in columns of p-cells is the rank of the (p − 1)-st
boundary group. But we can extract more:

• adding σj gives birth to a homology class iff column j of R is zero;

• in contrast, adding σj kills a homology class iff column j is non-zero; letting
R[i, j] be its lowest 1, σj kills the class born with the addition of σi.

If non-zero, column j of R contains a cycle representative of the dying class; it is the
boundary of the chain in column j of V . To prove these relationships, we assume
again that R[i, j] is the lowest 1 in column j. The representative cycle of the dying
class thus contains σi, which implies that it did not exist before the addition of σi.
All classes born before the addition of σi cannot die with the addition of σj , else
we could prove inductively that R is not yet reduced.

The above greedy algorithm is due to [22]. Its running time is the total squared
persistence of the filtration. In the worst case, it is proportional to m3 but shows
significantly better performance in practice. The worst-case time can be improved
to mω, where ω = 2.372 . . . [37], which is the currently best upper bound on the
complexity of matrix multiplication [46]; see also Strassen [41] for a milestone paper
in the sequence of improvements. These algorithms work for arbitrary boundary
matrices, while we can sometimes exploit special structure to get faster algorithms.
For example, if our space is a 2-manifold, we can use Poincaré duality and limit the
computation to 0-dimensional homology. In this case, a combinatorial algorithm
maintaining disjoint sets computes persistence in time proportional to m logm [26].
A common special case are regular cubical grids used in image processing. The
algorithm in [44] takes full advantage of the possibility to compute boundaries
implicitly, through subscript computations in an array. Additional savings are
possible if we use hierarchical cubical complexes [3], such as quad- and oct-trees.
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3. The Practice

In this section, we discuss four applications of persistent homology: the first to
atomic structures highlighting the role of scale, the second to human jaws illustrat-
ing derived metrics, the third to root systems controlling topological connectivity,
and the fourth to natural images mapping data to high dimensions.

3.1. The Atomic Structure of Material. Nature is full of structures that
possess features on multiple scales. Persistent homology quantifies scale and can
be used to measure the relative abundance of one scale to another. In this sec-
tion, we approach simulated organic material from this angle, following the work
of MacPherson and Schweinhart [36], who take steps toward characterizing the
statistical distribution of scale.

Pockets and cages. Let X be a union of finitely many closed balls in R3. We
may think of X as the geometric model of a protein, as commonly used in structural
molecular biology [33]. More interesting for biological questions than the model
itself is, in many ways, its complement. The cavities of the model are prime candi-
date areas for interactions with small ligands and other proteins. Here, ‘cavity’ is
an informal term for a depression or a partially protected area of the surface that
is still accessible from the outside. In an effort to make this intuition concrete, [19]
introduces the notion of a pocket, which is a subset of R3 − X that turns into a
void under uniform thickening of X; see [35] for a biologically motivated study of
their volume and shape. Similar to the evolution under thickening, which can be
complicated, pockets exhibit hierarchical structure. Without going into detail, we
note that each pocket of X corresponds to a point in the 2-nd persistence diagram
of the distance function, dX : R3 → R, defined by the geometric model. A point
u = 1

2 (y + x, y − x) corresponds to a void that forms at the thickening radius x
and disappears at the radius y. The existence of this point does not contradict the
possibility of the void splitting up into two at a radius x < r < y, with one of the
two voids disappearing at r < s < y. In this particular case, we have a side pocket
that corresponds to another point, 1

2 (s+ r, s− r), in Dgm2(dX).

This interpretation of points in Dgm2(dX) raises the question about the meaning
of points in the 0-th and the 1-st diagrams. We find a common metaphor by
interpreting their geometric realizations as cages with dimension and scale. For
example, the pocket corresponding to u cages a ball of radius between x and y; it
does not have enough space for a ball of radius larger than y, and it cannot prevent
a ball of radius smaller than x from escaping. Similarly, a point v = 1

2 (y+x, y−x)
in Dgm1(dX) cages an endless tube of cross-section radius between x and y. Indeed,
we can move the tube through the partial loop, but we cannot remove it unless
we find a place where its cross-section has radius less than x. Finally, a point
w = 1

2 (y + x, y − x) in Dgm0(dX) cages a closed surface uniformly thickened to
radius between x and y.
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Random polymers. We construct idealized geometric models of polymers iter-
atively, at each step randomly adding a unit ball to the growing structure. We call
the result a branched polymer if the new ball is glued at a single point, and this
point is chosen uniformly at random. As illustrated in Figure 2, the set of points
on the boundary that are available for gluing can be constructed by first doubling
the radius and second shrinking the boundary back to the original model. This

Figure 2. A collection of 12 touching unit disks. The set of points on the boundary where
a 13-th disk can be glued without creating any additional intersection is constructed using
the boundary of the union of the disks with twice the radius.

set is a union of open patches on the spheres bounding the balls, and its area can
be computed using software based on alpha shapes [31]. To have a comparison,
we introduce Brownian trees, which are constructed the same way except that the
uniform distribution over the mentioned set is replaced by another distribution
that takes into account the difficulty of reaching a point with a unit ball approach-
ing the union by Brownian motion from infinity. The branched peptides and the
Brownian trees are easy to distinguish. Indeed, a branched peptide cannot have a
large void; a ball that could comfortably fit inside would be added sooner or later.
In contrast, a Brownian tree can protect a large void with narrow entrances. Let-
ting dP , dT : R3 → R be the distance functions defined by a branched peptide and
by a Brownian tree, we therefore expect points with large persistence in Dgm(dT )
but not in Dgm(dP ).

There is a less obvious difference in the horizontal or scale direction. Let Pp(x)
be the number of points in Dgmp(dP ) with death value plus birth value at least 2x,
and let Tp be the similarly defined function for the Brownian tree. MacPherson
and Schweinhart find experimental evidence that P1 and P2 are both roughly a
constant times 1

x2 , which is the motivation to say that the branched peptides have
persistence dimension 2, both for 1-cages and for pockets. No such exponent seems
to exist for Brownian trees.
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3.2. The Shape of a Human Jaw. Its stability suggests the Wasserstein dis-
tance between persistence diagrams as a similarity measure for shapes. Indeed,
it is difficult to compare shapes directly, but it is easy to compute and compare
persistence diagrams for suitably chosen functions. We discuss this approach by,
first, presenting a relation between persistence and the Gromov-Hausdorff distance
and, second, reviewing an application to human jaws.

Comparing shapes and metrics. The comparison or fitting of shapes arises
in many walks of life — too many to warrant an example. For solid shapes, we
may focus on prominent protrusions and cavities, but this is less effective when we
deal with flexible shapes. An important subclass of the latter has a boundary that
folds but does not stretch or shrink. More formally, this boundary is a space with
a constant metric. Following this line of thought, Chazal et al. [9] consider finite
metric spaces, X and Y, and use persistence diagrams as their stable signatures.
We need some definitions to state their results. A correspondence between X and
Y is a subset of X×Y whose projections back to X and to Y are the entire spaces.
The Gromov-Hausdorff distance between the two spaces is

GH(X,Y) =
1

2
inf sup

∣∣‖x− x′‖X − ‖y − y′‖Y∣∣, (7)

where we take the infimum over all correspondences, γ, and the supremum over
all pairs (x, y) and (x′, y′) in γ. With this definition in place, we consider the
Vietoris-Rips complex for a distance threshold, a ≥ 0. Specifically, we draw an
edge between any two points at distance at most a, and we let Ripsa(X) be the
flag complex defined by these edges; see Section 2.1. Varying a, we let RX be
the resulting sequence of spaces, and, applying the homology functor, we get a
persistence module characterized by the persistence diagram, which we denote
as Dgm(RX). A consequence of the main result in [9] is a relation between the
bottleneck distance and the Gromov-Hausdorff distance:

W∞(Dgm(RX),Dgm(RY)) ≤ GH(X,Y). (8)

We thus get a lower bound on a quantity that is generally difficult to compute and
to approximate. If we accept the Gromov-Hausdorff distance as a reasonable com-
parison of metric spaces, we can use the bottleneck distance between persistence
diagrams to disprove that two spaces are similar. But because the inequality is
one-sided, we cannot prove their similarity.

Average and individual jaws. An important shape in orthodontics is the hu-
man jaw. Comparisons between them have several practical applications: one
being the recognition of medical conditions, such as the Habsburger chin; another
is the monitoring of ongoing treatments. Traditionally, this comparison is done
with a standardized version of the landmark method in statistical shape analysis
[18]. Here, we describe an enhancement of this method using persistent homology,
as employed by Gamble and Heo [25]. In this particular study, they consider a col-
lection of N = 240 jaw bones, each represented by k = 22 landmark points chosen
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by an expert for their clinical relevance. The points are labeled and denoted as
uji , for 1 ≤ i ≤ k and 1 ≤ j ≤ N . After aligning the jaw bones in R3, we average

the landmarks to get k points ui = (
∑N
j=1 u

j
i )/N , which we call the mean shape

of the N data sets. The k points define a Delaunay triangulation, D, which is a
3-dimensional simplicial complex with probability 1. We view it as an abstract (as
opposed to geometric) simplicial complex, and filter it differently for each data set.
To describe this filtration, let Dj be the j-th copy of the Delaunay triangulation,
and define the weight of the edge connecting the points ui and ui′ as

weightj(i, i
′) =

‖uji − u
j
i′‖∑N

`=1 ‖u`i − u`i′‖
.

Inspired by the construction of the Vietoris-Rips complex, we use a real threshold
a ≥ 0 and filter Dj by taking the maximal subcomplex whose edges have weight
at most a. This gives N filtrations of the Delaunay triangulation and, correspond-
ingly, N persistence diagrams, one for each data set.

The final analysis is done in the space of persistence diagrams, which is an
important point in this story. Fixing q = 2, we get the Wasserstein distance, Wq,
between every pair of diagrams. Doing this for individual dimensions but also
for the cumulative diagrams, the most interesting results appear in dimension 1.
Switching to traditional methods, the pairwise Wasserstein distances are used to
embed the data as points in R2 using multidimensional scaling [32]. Closely ex-
amining the results, Gamble and Heo find that one of the coordinates correlates
with the expansion of the jaw — the treatment used on the patients. In partic-
ular, it distinguishes between the control group and the two treatment groups as
they evolve over time. Interestingly, the inter-landmark distances that have the
highest positive correlation with that coordinate are those that cross the mouth
and measure the width of the jaw.

3.3. The Connectivity of Root Systems. A common theme in the reconstruc-
tion of shapes is topologically correct connectivity. One example are brain surfaces,
which, at the commonly adopted scale, all have the topology of the 2-dimensional
sphere. Another example are root systems of agricultural plants, which are thick-
ened 1-dimensional trees. In this section, we focus on the contribution of persistent
homology to the control of the topological connectivity.

Reconstruction by ordered selection. A common paradigm in the reconstruc-
tion of shapes is the selection of cells from an underlying collection, U . This is often
facilitated by estimating a fitness value for each cell; that is: a function f : U → R.
Given a threshold, α, we select all cells with fitness at least α. In other words, we
reconstruct the shape f−1[α,∞). This is also the strategy in the reconstruction of
root systems as described in [47]. Inevitably, there are cells with fitness value close
to the threshold for which the decision depends on chance. To avoid such cases, we
may put effort into improving the accuracy of the fitness function. Here, we follow
an alternative approach that uses global information to influence the selection.
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To make the setting more concrete, assume U is a decomposition of a compact
subset of R3 into unit cubes called voxels. The information about the root system
is obtained from a collection of 2-dimensional photographs taken from different
directions, each segmented into foreground and background, the former being the
projection of the root system onto the plane of the camera. We construct the
shape as the collection of voxels all of whose projections belong to foregrounds.
To make this more realistic, we allow for ambiguity entering the setting through
uncertainty about the position and the angle of the camera, imperfect lighting
conditions, optical distortion, shape details that challenge the resolution of our
observations, etc. Instead of a binary we get a real-valued fitness function, as
discussed earlier. To shed light on the dependence of the reconstruction on the
threshold, we sort the voxels in the order of non-increasing fitness, adding their
square sides, edges, and vertices, making sure that every cell (of any dimension)
succeeds its faces in the ordering. We call the result a filter, listing its cells in
order as σ1, σ2, . . . , σm. Letting Ki be the complex consisting of σ1 to σi, we get a
filtered complex: ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km. Each complex Ki is our best choice
for f(σi) ≥ α > f(σi+1).

How do we know that it would not be better to use a slightly different thresh-
old or to permute some of the cells with same or similar fitness values? We use
persistence to elucidate this question. When the target connectivity is clear, this
perspective leads to improved local choices. For a root system, we expect β0 = 1
and β1 = β2 = 0; that is: a connected shape without tunnels and voids.

Local reordering. To get started, we apply the homology functor to get a persis-
tence module 0 = H(K0)→ . . .→ H(Km). As explained in Section 2.2, homology
classes are born and die. In our case, they correspond to components, loops, and
closed walls. Since the complex is built up one cell at a time, we can associate
these events with individual cells.

dim = 0: a vertex gives birth to a new component; there is no other case.

dim = 1: an edge gives either birth to a loop, or it kills a component by bridging
the gap to another component.

dim = 2: a square gives either birth to a wall, or it kills a loop by filling in the last
opening of the tunnel.

dim = 3: a voxel kills a wall by filling in the last piece of the void it surrounds;
there is no other case.

Importantly, we can associate each birth with a death, or with infinity if it marks
a homology class of the last complex. We visualize these pairs as intervals in
the barcode, paying special attention to the ones that contain the threshold, α.
Suppose there are β0 +β1 +β2 such intervals, and note that they correspond to the
components, loops, and walls in Ki, where f(σi) ≥ α > f(σi+1). In the lucky case,
we have β0 = 1 and β1 = β2 = 0, and, therefore, a connected reconstruction of the
root system, without loops or voids, as desired. Otherwise, we aim at removing
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all surplus intervals, which we do by modifying the fitness values of the cells. This
may lead to changes in the ordering, which we decompose into transpositions of
contiguous cells, an operation we discuss next.

Suppose we increase the fitness of a cell σ = σ`, let τ = σ`−1 be the cell to
its left, and assume that the increase improves the fitness of σ beyond that of
τ . If there is no dependence between σ and τ , then we can just transpose them.
If the transposition affects the pairing we call it a switch and refer to [14] for a
complete analysis and a fast update algorithm. The most interesting case is the
switch in which σ and τ change their status: from giving birth to giving death
and vice versa. Finally, if τ is a face of σ, then the transposition is prohibited,
and we have to increase the fitness value of τ along with that of σ. Moving τ
may have an adverse effect on the connectivity at α since τ may be the endpoint
of another interval. Indeed, obstacles to repair cannot always be avoided as the
general problem of optimal reconstruction is NP-hard [2]. Notwithstanding these
shortcomings, the filter is an efficient mechanism for the control of the topology
of the reconstructed shape. Considering the widespread need of topology repair
in the applications, this presents a significant potential for the improvement of
reconstruction algorithms.

3.4. The Statistics of Natural Images. After discussing low-dimensional ap-
plications, we are ready to extrapolate what we learned to dimensions beyond
the visible. The need for such extensions is substantial because scientists collect
progressively more and larger datasets whose meaning is hidden in the invisible
dimensions. An example are cancer profiles which promise to shed new light on
individual differences. In this section, we focus on high-dimensional data derived
from photographs, following the work of Carlsson et al. [8].

Image statistics. To understand the variation of receptive properties of simple
cells in the mammalian visual cortex, van Hateren and van der Schaaf [29] used a
carefully calibrated digital camera to gather a collection of 4,212 images of natu-
ral environments — woods, open landscapes, and urban areas. Following earlier
work, their research relates the statistics of such images to the cell properties and
supports the proposition that the cells have evolved to process natural images.
Moving toward a mathematically accessible setting, Carlsson et al. [8] consider
the topology of 3-by-3 high-contrast patches extracted from these photographs.
Studies show that humans look more in the regions of high spatial contrast, which
justifies their emphasis. The restriction to the small patches is especially inter-
esting. It allows to dramatically reduce the dimensionality of the problem to nine
while preserving information about the global statistics of the image. The patches
are selected as follows:

(1) after picking 5, 000 patches in each image, we treat each one as a vector with
nine coordinates (one per pixel) and therefore as a point in R9;

(2) we subtract the average from each component, noting that this puts every
point on a hyperplane, which we identify with R8, and moves low contrast
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patches close to the origin of R8;

(3) defining the contrast of a patch as the norm of the point, we select the 1, 000
patches with highest contrast from each image;

(4) normalizing by the contrast, we obtain a set of points in the 7-dimensional
sphere in R8, which we denote as S7.

For computational reasons, the space is down-sampled further, from about four
million to 50, 000 points. Even after the initial filtering, the data set contains more
information than we can comprehend. Therefore, it is prudent to focus on its core
subsets to expose otherwise obscured phenomena. To this end, the remaining high-
contrast patches are filtered by their local densities in S7. Specifically, we compute
the distance to the k-nearest neighbor for each point, and we write X(k, P ) for the
top P percent of the points ordered by this distance measurement.

Popular subspaces. Like the knobs on a microscope, the parameters k and P
control the focus of our view. At the coarsest scale, the space X(300, 30) consists of
a single circle, noticeable in the 1-dimensional persistence diagram of the distance
function. Inspecting it, Carlsson and collaborators find that it consists of linear
gradients, rotating around the center of the patch. In Figure 3, it is depicted by
the patches on the two horizontal gray lines; they connect into a single circle by
identifying the matching patches at their opposite ends.

Figure 3. The Klein bottle of 3-by-3 patches. The horizontal edges are glued to each
other from left to right, and the vertical edges are glued with a twist.

After sharpening the view by transitioning to X(15, 30), the 1-dimensional
persistence diagram detects five prominent homology classes. Inspection of the
point set verifies the ‘3-circle model’, suggested in earlier work by Carlsson and de
Silva. In addition to the first, two more circles appear in X(15, 30) and intersect
the primary circle in two points each. (The first Betti number of the resulting space
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is indeed five.) In Figure 3, the matching patches at the top and the bottom are
identified, turning the two dotted lines into circles. The appearance of the three
circles in the high-density subsample hints at the two preferences in natural images:
linear intensity functions as well as vertical and horizontal directions. Turning
the knobs further down and more, we fill in lower density regions. Persistent
homology of the resulting point set, taken with modulo two coefficients, acquires a
2-dimensional class and retains two independent 1-cycles. The torus and the Klein
bottle are the only 2-manifolds with this homology. By examining how they fit
into the point set (both experimentally and theoretically), the Klein bottle prevails.
Figure 3 illustrates the corresponding arrangement of the patches.

Knowing that the bulk of the points lie near a Klein bottle, Carlsson and
collaborators push on to find an explicit representation of this 2-manifold inside
S7. The motivation is image compression. A point (a 3-by-3 patch) on the Klein
bottle is fully specified by only two coordinates. There are not many points far
from the Klein bottle, and each such point can be specified by two coordinates
plus a residual description of the difference to the projection onto the Klein bottle.

4. Discussion

Persistent homology is a new mathematical concept that has received attention
from inside and outside mathematics. It is our interpretation that the reason for
the interest is multi-facetted. We hope that the structure of this paper has made
this point clear. In particular,

• we stress the connection to data in Section 2.1;

• we emphasize the algebraic side of persistent homology in Section 2.2;

• we explain the stability of its diagrams in Section 2.3;

• we sketch its fundamental algorithms in Section 2.4;

• we shed light on the role of scale in Section 3.1;

• we discuss derived metrics facilitating the analysis of shapes in Section 3.2;

• we exhibit the control of topological connectivity in Section 3.3;

• and we show that high dimensions aid our understanding in Section 3.4.

What are the developments we may expect to push the envelope of the method
in the next few years? We see multi-parameter persistence, the statistics of per-
sistence, and persistence for dynamical systems as major thrusts of the current
research. All three are driven by applications, as was persistent homology from its
very beginning.
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[37] N. Milosavljević, D. Morozov and P. Škraba. Zigzag persistent homology in matrix
multiplication time. In “Proc. 27th Ann. Sympos. Comput. Geom., 2011”, 216–225.

[38] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City,
California, 1984.

[39] V. Robins. Toward computing homology from finite approximations. Topology Pro-
ceedings 24 (1999), 503–532.



20 Herbert Edelsbrunner, Dmitriy Morozov

[40] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

[41] V. Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew.
Math. 375/376 (1987), 406–443.

[42] C. Villani. Topics in Optimal Transportation. Amer. Math. Soc., Providence, Rhode
Island, 2003.

[43] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes
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