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Abstract. We describe an in situ system for solving iterative problems.
We specifically target inverse problems, where expensive simulations are
approximated using a surrogate model. The model explores the parameter
space of the simulation through iterative trials, each of which becomes
a job managed by a parallel scheduler. Our work extends Henson [1], a
cooperative multi-tasking system for in situ execution of loosely coupled
codes.

1 Introduction

The growing gap between the speed of I/O and computation is widely recognized in
the HPC community. Already on today’s architectures the slow I/O is responsible
for major bottlenecks; the problem will only get worse as we move to exascale,
where data movement will dominate all design decisions.

The response to this problem is also well-known by now: in situ and in transit
processing. If two codes (e.g., simulation and analysis) need to exchange data,
they should do so directly, without going through disk. When running on the
same nodes, they should share memory and access one another’s data directly.
When the rates of processing differ, it’s logical to run different codes on different
nodes, but they should send data directly to each other, without saving it to
disk.

A number of in situ frameworks have been designed to address the I/O problem
following this principle: ADIOS [2], DataSpaces [3], GLEAN [4], Damaris/Viz [5],
ParaView’s Catalyst [6], VisIt’s libsim [7], Decaf [8], Henson [1], to name a few —
we refer the reader to a community effort comparing four of these frameworks [9].
In all cases, the general pattern of the execution is the same: a simulation produces
data and passes it to a chain of analysis codes that transform it, identify its
salient features, visualize them, or save them to disk in significantly reduced,
scientifically meaningful summaries.

Such chained pipelines support direct simulations, which have been invaluable
tools in computational science: given a complete description of a physical system,
they let a user predict an outcome of a measurement. The aim of our paper
is to bring a different execution regime to the attention of the community and



to describe our (partial) solution to the problems that it presents. We focus
on the class of inverse problems, where the measurement result is known, and
one tries to infer the values of parameters which characterize the underlying
physical system. For example, in experiments we present in this paper, we try
to reconstruct thermal parameters of the intergalactic gas in the universe using
Lyman α power spectrum measurement [10].

As each simulation can be expensive, it is beneficial to explore parameter
spaces by constructing surrogate models, i.e., computationally cheap approxima-
tions of the simulated phenomena. These models help identify those parameters
that are likely to produce the most scientific insight. Crucially, these models
facilitate automatic iterative parameter sweeps: the decisions about the input
parameters to the simulations can be made automatically based on the results
of the previous runs. Furthermore, the input data (either observational or finer
simulation output) is usually shared between different parameters. Together,
these features offer an opportunity for in situ automation, which we explore in
this paper.

Related work. Besides the aforementioned in situ frameworks, we briefly note
Swift/T [11], a system that allows the user to script complex workflows. It is much
more advanced than our work, and we believe can be used to implement the kind
of iterative execution described in this paper. We do emphasize one significant
difference. To include user code, implemented in C or C++, into Swift/T, the
code has to be organized and compiled into Swift modules (via SWIG wrappers).
Because we rely on Henson [1], described in the next section, we are able to work
with the separate executable directly.

2 Background

Henson. Our solution extends Henson [1], a cooperative multi-tasking system
that lets multiple distinct executables run on the same node and share memory,
without any changes to their memory management facilities.

Henson is built on two main ingredients: position-independent executables and
coroutines. Individual codes are compiled as position-independent executables,
making them simultaneously stand-alone executables and dynamic libraries.
Henson loads multiple such codes as dynamic libraries, using libdl facilities.
This puts them in the same address space, letting them access each other’s
memory directly.

The individual codes, referred by Henson as puppets, are treated as coroutines:
each one gets its own stack. To coordinate execution, the codes call henson_
yield function, which returns control to Henson (e.g., after every time step of a
simulation). Crucially, when the control returns back to the puppet, its execution
resumes exactly where it left off — all state is preserved. This way Henson
provides low-overhead context switching and lets the user coordinate execution
of multiple codes from an external script.

Henson includes facilities to help puppets exchange data. It provides a shared
map of symbolic names to memory addresses to make it easy for puppets to



identify important memory segments. For example, if simulation saves an address
of an array by calling henson_save_array("particles", &particles, ...),
an analysis code can later access this array directly by calling henson_load_
array("particles", ...) — the memory is shared, so only addresses are ex-
changed.

Henson also provides auxiliary facilities to help users work with MPI. Different
codes can be organized into execution groups, which are given symbolic names
(e.g., “producer” and “consumer”) and are assigned to run on different processes.
To exchange data between the two groups (e.g., to support in transit analysis),
Henson provides henson_get_intercomm function that returns an MPI inter-
communicator connecting the two groups.

Henson’s major limitation is the domain-specific language used to express
its scripts. It supports only while-loops and if-statements: both help express
the order in which execution should alternate between the puppets, but are too
limited in general. To support more complicated workflows, we have extended
Henson to use ChaiScript,3 a general purpose scripting language, implemented
as a C++ header-only library. The interpreter, including its standard library, is
compiled directly into Henson. This offers a major benefit over Python (another
natural choice): the interpreter does not search for modules on the filesystem;
this automatically obviates a major difficulty with using Python in an HPC
environment.

Finally, the most significant addition to Henson, made as part of this work,
is the addition of a scheduler that lets the user iteratively launch multiple jobs
(that themselves can use in situ and in transit processing), depending on the
decisions made by one of the puppets, in our case a surrogate model. We describe
the scheduler in detail in the next section.

Surrogate models. Surrogate models are computationally cheap approximations
of expensive simulations models [12]. They are widely used in derivative-free
optimization, when objective function values are computed based on the output
of computationally expensive black-box simulation models, and thus no analytic
description of the objective function and its derivatives are available. In general,
we use the representation f(x) = s(x)+e(x), where f(x) is the expensive objective
function, s(x) is the surrogate model, and e(x) is the difference between the
two. Surrogate model optimization algorithms start by generating an initial
experimental design of size n0, for example, using Latin hypercube sampling.
The expensive function f(x) is evaluated at the points in the initial design, and
we fit the surrogate model s(x) to the data pairs {(xi, f(xi))}n0

i=1. Then, in each
iteration of the algorithm, we use the surrogate model s(x) to select one or
multiple new points x∗, at which we will do the next expensive evaluations. We
update the surrogate model with the new data (x∗, f(x∗)) and iterate until the
stopping criterion has been met. Typically used stopping criteria are a maximum
CPU time or a maximum number of allowed expensive function evaluations.

Different surrogate model types have been developed in the literature. We
focus here on radial basis function (RBF) models although other models may

3 http://chaiscript.com/
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work in our context. An RBF interpolant is defined as follows:

s(x) =

n∑

i=1

λiφ(‖x− xi‖2) + p(x), (1)

where n denotes the number of points for which we have already evaluated the
objective function, φ(·) is a radial basis function (we use the cubic, φ(r) = r3),
and p(·) denotes the polynomial tail (here, p(x) = a + bTx, a ∈ R, b ∈ Rd, d is
the number of dimensions). The model parameters are determined by solving a
linear system of equations.

Different strategies have been developed to iteratively select one or more new
sample points. For example, Gutmann [13] uses a target value for the surrogate
model and defines a merit function which he (cheaply) optimizes in order to
determine the next sample point. Regis and Shoemaker [14] use a stochastic
approach in which they create candidate points by perturbing the best point
found so far and based on scoring criteria, the best candidate is selected for
evaluation. Müller and Shoemaker [15] use a similar approach and in addition
to candidates created by perturbation, they also create candidates by uniformly
sampling points from the whole variable domain. More examples of surrogate
model algorithms and their application to engineering design problems can be
found in the literature [16].

3 Scheduler

To support iterative workflows, we have added a Scheduler class to Henson.
Scheduler takes over a given execution group (a set of MPI ranks). It dedicates
one process as a controller and the rest as workers. The controller loads a puppet
in charge of the overall execution logic (the surrogate model in our case). That
puppet generates a set of trials and, over time, receives results of expensive
evaluations, updates the model, and generates new trials. Given the trial points
from a surrogate model, a user can schedule a new job by specifying an arbitrary
ChaiScript function to call, together with its arguments, how many processes it
needs to execute, and how those processes should be partitioned into execution
groups. The job is placed in the queue on the controller process.

The controller maintains the state of worker processes (whether they have
a job assigned to them or whether they are available). If there are jobs in the
queue and enough available workers to execute them, it sends out the job (the
previously queued function) to the workers. When the workers are done with
the job, one of them (e.g., the root) returns a value, which is sent back to the
controller. The result of the execution (in our case, expensive evaluation f(x∗))
is placed in a results queue to be retrieved and processed by the surrogate model.
Listing 1.1 illustrates a sample ChaiScript using the scheduler. Figure 1 illustrates
a possible break down of processes between execution groups within and outside
the scheduler.

We highlight some technical ingredients that are crucial for this system to
operate properly. When a set of processes is selected to execute a job, we need to



var pm = ProcMap ()
var nm = NameMap ()

def world(args)
{

var sim = load ("./ simulation ...", pm)
var ana = load ("./ analysis ...", pm)

sim.proceed ()
while (sim.running ())
{

ana.proceed ()
sim.proceed ()

}

if (pm.local_rank () == 0)
{

var result = nm.get(" result ")
return result

}
}

var sched = Scheduler ()
if (sched.is_controller ())
{

var surrogate = load ("./ surrogate -model ...", pm)
surogate.proceed ()

// schedule jobs
for (/* initial trials */)
{ sched.schedule ("job -${i}", "world", args ,

["all" : 0], sched.workers ()/2) }

while (sched.control ())
{

if (!sched.results_empty ())
{

var x = sched.pop()
// pass x back to the surrogate
surrogate.proceed ()
// get new trials and schedule new jobs

}
}
sched.finish () // signal to workers

} else { scheduler.listen () }

Listing 1.1. A sample scheduler ChaiScript.



construct an MPI communicator on those processes — this communicator acts
as the job’s MPI_COMM_WORLD. Unfortunately, all (intra-)communicator creation
functions provided by MPI are collective, meaning that all the workers, even
those that are not assigned to the given job, have to execute them. In our case,
this would mean synchronizing all the workers to create a communicator for a
new job — clearly undesirable behavior.

To work around this problem, we use the algorithm of Dinan et al. [17]
that allows for non-collective communicator creation — or, more accurately, it’s
collective only on the processes that participate in the newly created commu-
nicator. Unlike MPI_Comm_split that constructs a communicator by splitting a
larger communicator, the non-collective algorithm builds a communicator from
the bottom up. Starting from MPI_COMM_SELF, it alternates between intra- and
inter-communicators, using MPI_Intercomm_create and MPI_Intercomm_merge
functions, and merges the local communicators from the participating ranks into
the desired communicator. We refer the reader to the original paper [17] for
details.

Once the processes construct the communicator, they split it into sub-
communicators corresponding to the execution groups specified by the user.
Within the job, the user can access the inter-communicators between the groups
by calling henson_get_intercomm, mentioned in the previous section. The advan-
tage of this design is that the puppets become oblivious to whether they are
running in a job inside the scheduler or over all the ranks. As a result, the user
can take advantage of in transit analysis inside a job, where separate execution
groups are responsible for data generation and analysis. As the earlier work on
Henson [1] illustrates, such an execution regime can be beneficial when analysis is
computationally expensive: the overhead of data movement pales in comparison
to the gains of better strong scaling.
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Fig. 1. Schematic partition of the processes with the scheduler.



4 Surrogate Model Experiment

In cosmology, spatial correlations of the Lyman α flux offer a promising route
to measuring the cosmological and thermal parameters at high redshifts and
small scales [18]. The measure we use is the Fourier-space analog of the two-point
correlation function — the power spectrum. Given a cosmological model and
a model for the ultraviolet background emission from galaxies, we can predict
the resulting flux power spectrum, using the Nyx code [19]. The full parameter
space of interest consist of 5 cosmological and 4 thermal parameters; to test our
computational workflow system, we work with only 3 thermal parameters, thus
significantly reducing the dimensionality of the problem. In addition, instead of
running full Nyx simulation for every function evaluation (approximately 100,000
CPU hours), we use outputs of a single run and rescale 3 thermal parameters
before calculating the power spectrum (approximately 100 CPU hours). This
rescaling is an approximation of what a full Nyx run would yield, and is ∼10%
accurate (Lukić et al. in prep.), which suffices for the purpose of this work.

We ran our experiments on NERSC’s Edison, a Cray XC30 supercomputer
with 5,576 nodes with 24 cores each. Each run requested wall clock time of thirty
minutes and 3585 processors (150 nodes). This allocation is just enough to run
seven simultaneous jobs of 512 processes each, with an extra process reserved
for the controller. The input data, a snapshot of a cosmological simulation, is a
193 GB HDF5 file. The individual jobs consist of two separate executables: the
power spectrum calculation for the given input parameters and comparison of the
resulting spectrum to the given target in L2-norm. The latter value is returned
to the scheduler, which passes it to the surrogate model on the controller process
to update its internal state and generate new trials.

Explicit caching. To avoid re-reading the input file, we implemented a stand-
alone puppet that reads the data and stores it in memory. It’s executed on all the
worker processes before they come under the control of the scheduler. Because
every job uses 512 processes, each process requires the same data for every job,
and we can pre-load the data, save it in memory, and let individual jobs access it
directly without re-loading it from disk. In two separate experiments, the average
I/O time was 113.47 and 116.98 seconds. The subsequent calculation of the power
spectrum took 322.39 and 423.16 seconds on average, respectively.

Implicit caching. Re-running the job without explicit caching, where each job
re-loads the data directly from disk, we identified an implicit caching mechanism:
Linux kernel’s page cache. The average I/O time for the first seven jobs was
114.70 and 105.25 seconds, across two experiments. However, in the subsequent
batch of jobs, executing on the same processes, the I/O time went down to 1.57
and 0.75 seconds. Forcing the kernel to drop its caches by allocating a sufficiently
large array brought the average I/O time up to roughly 20 seconds, presumably
the rest of the difference (115 vs 20 seconds) is due to other caching within the
I/O subsystem.

Although in this case explicit caching offers virtually no benefit, it still has
advantages. First, it gives the user explicit control over which data is stored
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Fig. 2. A graph of queue wait times as a function of requested wall clock. The times
tally all requests for 100 to 200 nodes, over six months (February through July 2016).

between job invocations — the kernel is far less predictable. Second, it allows
the user to cache data coming not only from disk, but from any other source —
in the full simulation pipeline (that we ultimately aim to implement), the data
would come directly from the simulation, without being saved to disk first.

Alternatives. One could implement iterative job execution using the supercom-
puter’s workload manager directly (SLURM in case of Edison). Submitting jobs
into the queue, waiting for their execution and results, updating the surrogate
model, and iterating would incur the extra overhead of queue wait times (and,
of course, the extra I/O overhead). To get a fair comparison we consider the
difference in queue wait times, when requesting the same number of nodes for a
different amount of time.

Figure 2 shows the average and maximum queue wait times, in non-debug
queues of Edison, as a function of requested wall clock, for 100 to 200 nodes,
over the six months from February through July 2016. The salient point is that
the average time grows sub-linearly. For example, requesting the nodes for 60
minutes gave an average queue wait time of 14 hours, while requesting the nodes
for 600 minutes resulted in average wait time of 63 hours. In other words, it’s
advantageous to request more time and manage the jobs within the allocation.

It is possible to run multiple simultaneous jobs within the allocation directly,
using MPI’s MPMD mode. Besides again incurring I/O overheads, doing so would
synchronize the jobs running simultaneously and would force all of them to take
as much time as the slowest job. In our case, although the average calculation
time was around 415 seconds, the fastest calculation finished in roughly 250
seconds, making the synchronization overhead unreasonable.



5 Conclusion

Iterative workflows — for example, for parameter search in inverse problems
— are important in computational science, and we urge the community to not
neglect them. The system presented in this paper takes the first step towards their
support. In situ processing confers multiple advantages in this context. Besides
the illustrated savings in I/O time, Henson lets us monitor the execution of the
analysis codes by directly accessing their memory and thus avoiding unnecessary
overheads. Such capability can be useful for terminating the code early. For
example, if we are interested in an L∞-norm of a time-varying measurement,
we can stop computation once the maximum difference exceeds the current best
guess.

Our system also supports more complicated experiments than presented in
the previous section. For example, the full analysis we would like to run involves
taking snapshots of a live Nyx simulation and fitting parameters to them. To do
so, it’s essential for the jobs managed by the scheduler to interact with execution
groups outside of it. The necessary ingredients are already built into the system
(henson_get_intercomm can access inter-communicators across execution group
levels), and we plan to experiment with such more complicated execution regimes
in the near future.
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