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Abstract

Given a continuous functiofi : X — R on a topological space, we consider the preimages
of intervals and their homology groups and show how to readréimks of these groups
from the extended persistence diagrany ofn addition, we quantify the robustness of the
homology classes under perturbationsfafising well groups, and we show how to read
the ranks of these groups from the same extended persiddeagram. The special case
X = R? has ramifications in the fields of medical imaging and sdiientisualization.

Keywords. Topological spaces, continuous functions, interlevel sets, homotoggnded persis-
tence, perturbations, well groups, robustness.

1 Introduction

The work reported in this paper has two motivations, onertezal and the other practical.
The former is the recent introduction wkll groupsin the study of mapping$ : X — Y

between topological spaces. Assuming a metric space afrpattons, we have such a
group for each subspacde C Y, each bound > 0 on the magnitude of the perturbation,
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and each homological dimensign These groups, and the diagrams that they generate,
extend the boolean concept of transversality to a realedaineasure we refer to asbust-
ness Using this measure, we can quantify the robustness of afied of a mapping [10]

and prove the stability of the apparent contour of a mappiog fan orientabl@-manifold
toR? [9]. In this paper, we contribute to the general understamdi well groups by study-

ing the real-valued case. Along the way, we also extend thergétheory of well groups

to incorporate relative well groups. Specifically,

I. we give a general definition of relative well groups givemappingf : X — Y, a
numberr > 0, and a nested paik’ C A of subspaces df, and

Il. we characterize the relative well groups6f X — R wheneverA is an interval and
A’ is a subset of the endpoints.

Applications of this theoretical work are anticipated indizal imaging and scientific vi-
sualization, where data in the form of real-valued fundigmcommon. To mention one
example, it is common to acquire information about intemrgians through a magnetic
resonance image, which results if-dimensional array of intensity values, best viewed as
a function from the unit cube to the real line. The predomimaethod for highlighting or
extracting relevant substructures of this image uses igas of real values. Generically,
these ar@-manifolds, commonly referred to asntoursor isosurface§12]. Sometimes,
these2-manifolds are complemented by preimages of intervalesred to asnterval vol-
umesin visualization [11]. In this paper, we call the preimageaofalue aevel set and
the preimage of an interval anterlevel setin which the interval can be closed, open, or
half-open. We contribute to the state-of-the-art by

lll. explaining how the homology of level and interlevelsetan be read off the extended
persistence diagram of the function, and

IV. describing how the robustness of features in level andrievel sets, quantified
through well groups, can be read off the same diagram.

Our results add up to a ‘point calculus’ in algebraic topglémy mining the rich homolog-
ical information contained in the extended persistencgrdia of a real-valued function.
The compactness of the data representation and the effica@nbe mining operations
make the diagram an attractive graphical interface toosfiodying3-dimensional images.
We view this tool as complementary to the contour spectrerdes in [1], which plot con-
tinuously varying quantities, such as area and volume sadiee family of level sets. The
most novel aspect of our diagram is the robustness infoomatvhich has previously not
been available. This novelty is combined with the unpreneztbease with which homo-
logical information is accessible. There is also evidemcetfe practicality of the interface
provided by the fast oct-tree implementation of the desdriboncepts [2], which has been
used to study-dimensional images of root systems of agricultural plants

Outline. In Section 2, we review necessary background on persisteigzag modules,
and well groups. In Section 3, we explain the point calcubrdriterlevel sets. In Section
4, we extend the point calculus to include the robustnessrmtion provided by the well
groups. Finally, Section 5 concludes the paper with a biigdfubssion of the contributions
and of future research directions.



2 Background

We divide the background material into three parts, intobaly persistence and extended
persistence in Section 2.1, explaining the extension tragijgnodules and level set pyra-
mids in Section 2.2, and defining absolute and relative welligs in Section 2.3.

2.1 Forward Maps

Traditional persistent homology is based on a nested sequetspaces, which induces a
linear sequence of homology groups connected by maps fribto kéght. We describe this
concept in two steps.

Persistence. The persistence of homology classes along a filtration gbaltgical space
can be defined in a quite general context [8]. For this paperneed only a particular
type of filtration, one defined by the sublevel sets of a tanmetfan. Given a real-valued
function f on a compact topological spa&e we consider the filtration aX via thesub-
level setsX,.(f) = f~'(—oo,r], for all real values.. Wheneverr < s, the inclusion
X, (f) <= X,(f) induces maps on the homology groups(X,.(f)) — H,(Xs(f)), for
each dimensiomp. Here we will use field coefficients so that the homology gsoape
vector spaces over the field. Often we will suppress the hogical dimension from our
notation, writingH(X,.(f)) = @, Hy(X,(f)); in this case, we will always assume that
all mapsH(X,.(f)) — H(X,(f)) decompose into the direct sum of maps on each factor.
A real valuer is called ahomological regular valuef f if there existse > 0 such that
the inclusionX,_s(f) < X,4s(f) induces an isomorphism between homology groups for
everyé < e. If r is not a homological regular value, then it if@mological critical value
We say thatf is tameif it has finitely many homological critical values and if themol-
ogy groups of each sublevel set have finite rank. Assumingjtlimtame, we enumerate
its homological critical values; < r, < ... < r,. Choosingn 4+ 1 homological regular
valuess; such thatsy < 11 < s1 < ... < r, < $p, We putX; = X, (f). The inclusions
X; = X; induce maps$®/ : H(X;) — H(X;) for 0 < i < j < n and give the following
filtration:

0=H(Xp) - HX;) —» ... = H(X,) = HX). 1)

We say a clasa € H(X;) isbornatX; if a ¢ imfi~1¢ A classa born atX; is said to
die enteringX; if f/(a) € imf'=1J butf*/~!(a) ¢ imf~1I~1. We remark that if a
classa is born atX;, then every class in the cosefl = o + im f~1% is born at the same
time. Of course, whenever such ardies enteringX;, the entire coséir] also dies with
it. We represenia| graphically as the pointr;, ;) in the plane. Drawing all birth-death
pairs as points, we get diagrams like the ones sketched imésdl and 3. Supposing that
b € R is different from all homological critical values, we caiteall points in the upper-
left quadrant defined byb, b) to get all classes born befobeand still alive; see the left
diagram in Figure 1. Their number is the rank of the homologyug of the sublevel set,
rank H(X;(f)).

Observe that we really need the extended plane to draw thésgmcause some classes
are born but never die, so the corresponding points bavas their second coordinates.
There is an elegant way around this minor annoyance, whichomedescribe.
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Figure 1: From left to right: the ordinary, extended, and relative sgjodias ofD(f). The number
of points (not shown) in the dark shaded regions is equal to the ranledfdimology group of the
sublevel set defined hiy

Extended persistence. Since the filtration in (1) begins with the zero group but ends
with a potentially nonzero group, it is possible to have st#asthat are born but never die.
We call theseessentiaklasses, as they represent the actual homology of the 3pate
measure the persistence of the essential classes, we {@l@md extend the sequence in
(1) using relative homology groups. More precisely, we @ersfor eachi the superlevel
setX? = f~1[s,_;,00). Note that we hav&X’ = () andX" = X by compactness. For

i < j, the inclusionX’ — X7 induces a map on relative homolobyX, X%) — H(X, X7).
These maps therefore give rise to the following extendew@fiitn:

0=H(Xp) = H(Xy) = ... 5 H(X,) = HX,X?) — ... = H(X, X™) = 0. 7))

We extend the notions of birth and death in the obvious wagcéthis filtration begins
and ends with the zero group, all classes eventually die. M extend the graphical
representation of the information contained by formpegsistence diagramavhich we
now introduce more formally. We have such a diagram for edctedsionp; see Figure

1. Each diagram is a multiset of points in the plane, comagiiine poin{r;, ;) for each
coset of classes that is born3f or (X, X"~*1), and dies entering; or (X, X"~J+1),

In some circumstances, it is convenient to add the pointhierdiagonal to the diagram,
but in this paper, we will refrain from doing so. The persiste diagram contains three
important subdiagrams, corresponding to three differentlinations of birth and death
location. Theordinary subdiagram®,(f), represents classes that are born and die during
the first half of (2). Theelative subdiagramR,(f), represents classes that are born and
die during the second half. Finally, teatended subdiagraré, (f), represents classes that
are born during the first half and die during the second hatfiefextended filtration. Note
that points inO,,(f) all lie above the main diagonal while pointsi), ( f) all lie below. On

the other handS, (f) may contain points on either side of the main diagonal ZBY), we
mean the points of all diagrams in all dimensions. Drawirgséhsubdiagrams side by side
can be cumbersome, and drawing them on top of each other caanbgsing. In Section

3, we will introduce a new design that addresses these aosnicer



2.2 Mixed Maps

We note that the homology groups in the extended filtratiqi2)pfor in the shorter filtration
of (1), are all vector spaces over a fixed field and that the rhapgeen them are all linear
maps. In [5], Carlsson and de Silva generalize this sitngticsequences of vector spaces
that are connected by maps going from left to right or fronmtrig left. We now briefly
review their work as well as the related work on level setagmodules in [6].

Zigzag modules. A zigzag modul&V is a finite sequence of vector spaces connected by
linear maps which either go forward or backward betweenetuts/e spaces:

WieWrea o eoW, oW, 0 e W, )

If the arrow advances froiW; to W, 1, then we denote the corresponding linear map as
a; : W; — W,; otherwise, we writeb; : W;; — W;. A submodulel of W is a
collection of linear subspacd$; C W; such thata;(U;) € Ujyq orb;(U;q1) € Uy,
whichever is the case for. A submoduleU is a summandf there is a complementary
submoduleV, meaning every vector space splits as a direct 8= U; © V;. The
authors in [5] prove that every zigzag module can be split intlecomposable summands
of a certain form, and, in particular, it has a basis, a coneepnow describe. First,
we suppose that we have, for eatha set of elementaj- € W; such that the nonzero
elements form a basis o¥;. In other words, we can decompodg into the direct sum
W, = @Aué—), noting that some of the terms on the right hand side may be 2éfe
use the superscripts to form correspondences between skes.b8pecifically, we require
aj(ub) = by, orb;(ul, ) = u’, depending on the case. Furthermore, we assume that,
for each superscrift there exist: < y such thafu;ﬂ # 0iff j € [z,y]. In other words, for
each fixed, we have a submodule

<u21><—><u12>H...H(u;>(—><u;+1>(—>...(—><u;> 4)
of W in which the non-zero vector spaces ardimensional and form a single contiguous
subsequence connected by identity maps. Calling such aitdenarinterval modulewe
think of it as being in correspondence with the closed irtefw, y]. The collection{w’ }
is abasisfor the zigzag module ¥V can be decomposed into the direct sum of the interval
modules (4). Equivalently, the collection is a basis\Waiif each mapz; is the direct sum
of the mapgu}) — (u}, ), and each map; is the direct sum of the mags’ ;) — (u}),
whichever one is defined.

Although a zigzag modulg/ can have many different bases, the set of intervals asso-
ciated to any such basis will be unique [5]. For example, asidfor the zigzag module
given by the filtration in (1) will have one intervat, y| for each coset of classes born at
X, and dying enterings, .

Mayer-Vietoris diamonds. We are interested in an elementary operation that connects
two minimally different zigzag modules: Mayer-Vietoris diamond5]. We suppose that
we have two zigzag modules differing only at positigrand that at this position we have



a diamond of the following form:

H(V,V’

a; 1 )&

+— H(C,C) HD,D') «— , (5)

H(E,E)

where we show the more general, relative form in which thempd spaces are subspaces
of the corresponding unprimed ones, and we Have C N D, E' =C' N D', V=C U D,
andV’ = C' UD’. We get the more special, absolute form by setfifig= D' = E' =

V' = (. The name of the diamond is justified by the long exact sequesecget by reading
the diamond from bottom to top and iterating through the disiens. When the primed
spaces are all empty, this gives the classic version of thgeMdietoris sequence, and
more generally, we get the relative version:

S H(B,E) = Hy(C,C) @ Hy(D, D) = H,(V, V') = Hy_y (B, E') = ...

see e.g. [13]. Importantly, this sequence is exact, whicama¢hat the image of each map
equals the kernel of the next map.
Such diamonds arise in the following context. Considerraga functionf : X — R

and the interleaved sequence of homological regular atidadrvalues:sy < r; < s1 <

< rp < 8p. SettingWa; = H(f!(s;)) andWaj 1 = H(f'[s;,s;11]), we get a
zigzag module of lengthn + 1, which, following [6], we refer to as thievel set zigzagf
f. It starts and ends with and alternates between advancing mapsand backward
mapsby;11. From this module, we can create a new one by fixing an indesub-
Stituting [Sj,8j+2] = [Sj78j+1} U [Sj+1,$j+2] for Sj+1 = [Sj78j+1] N [Sj+1, Sj+2], and
leaving all other groups unchanged; of course we also rexbestwo maps involving the
changed space. This produces a new zigzag module whichgdiften the old via a Mayer-
Vietoris diamond. This construction can be generalized ippifig between intersections
and unions of larger intervals and pairs of intervals, thaslpcing a whole array of zigzag
modules which differ via Mayer-Vietoris diamonds.

Thepyramid. Starting with the level set zigzag, we get an array of zigzaduhes which
are best described as monotonic paths that go diagonallgdig@vn, always from left to
right. The array of such paths is connected within a pyrahsttacture, which we now
describe. As a graphical guide, we consider the square dirmiigure 2. We give it a
coordinate system by parameterizing the downward slope &oat the upper left, te-co

in the middle, and back up tso at the lower right. Similarly, we parameterize the upward
slope from—co at the lower left, toxo in the middle, and back te-co at the upper right.
The two slopes divide the square into four triangular regi@ach containing a point with
coordinates: andb for every choice of: < b. We interpret this point differently in each
of the regions. To explain this interpretation, it is conean to introduce a shorthand that



uses open set notation for pairs of closed sets, writing A’ for (A, A"). Specifically,
f_l(m7y] (f_l(_oo7y]af_1(_oovx])a
[y = (e, 00), f My, 00)),
f ) = (f7H(=00,00), f7H (=00, 2] U f~ [y, 00)).

If a point with coordinates: andy lies in the bottom region, we think of it as the space

w T y z

Figure 2: Points in the pyramid are absolute and relative homology grddpsiotonic paths are
zigzag modules, any two of which differ by a finite number of Mayer-Mistdiamonds.

f~x,y]. However, if the point lies in the left, right, or top regiowe think of it as
Y2, yl, £z, y), or f~1(z,y), respectively. If we now take) < =z < y < z and
consider the pointéw, y), (w, 2), (z,y), and(z, z), we get a Mayer-Vietoris diamond in
each region; see Figure 2. This is easiest to see in the clogdal case sincér, y| =
[w,y] N [z, 2] and [w, z] = [w,y] U [z, z]. In the closed-open case, we hgweco) =
[w, 00) N [,00) and[w, c0) = [w, 00) U [z, 00) as well agz, o0) = [z,00) N [y, o) and
[y, 00) = [z,00) U [y, 00). Similar computations verify the diamond in the remaining t
cases.

By repeated application of the diamond, we can generate amptanic path from the
one along the bottom edge of the square. Each path is thusadeddy spaces as de-
scribed, and applying the homology functor gives a zigzaduteof absolute and relative
homology groups. The latter arise when we move the left dritrégd of the path, which
can be done without the Mayer-Vietoris diamond becausedhresponding spaces are and
stay empty so that the module remains unchanged. BesidésviHeset zigzag along the
bottom edge, we are particularly interested in the pathgalba upward slope, which trans-
lates into the extended filtration of (2). Its midpointisco, o), the center of the square,



which results inH(f~*(—o0, o)) = H(X). For this reason, we think of the center as the
apex of a pyramid, as viewed from above.

Remark 1. As a partial justification for the notation with open sets,mention that the ho-
mology group of the preimage of the interyal y), if computed with infinite chains, is iso-
morphic to the relative homology group@f [z, y], f~!(z) U f~1(y)). By excision, this
is isomorphic to the relative homology group(¢f* (—oo, o], f~1(—o0, z] U f~ [y, o0)).

2.3 Perturbations

The reader who wishes to learn how to read the homology ofiévie sets can safely skip

Section 2.3 and now continue with Section 3. However, tcedfitiate the robust from

the non-robust homological information in these readimgsneed to first understand the
subgroups of homology that give meaning to this concept.

Well groups. Suppose that we have a continuous mappingX — Y between topo-
logical spaces. Given a subsketC Y, we review here the definition of the well groups
Ua(r) for each radius: > 0. WhenA is clear from context, we will drop it from the
notation and simply writéJ(r), by which we mean the direct sum of groups(r), for
each homological dimensign We will also need the assumption that!(A) has homol-
ogy groups of finite rank in each dimension. In addition to Itiepping f, we assume a
subspacé? of C'(X,Y), the space of continuous mappings fréio Y, requiring thatP
containsf. For example? might consist of all mappings homotopic fo We assume
a metric onP and write|| f — k||, for the distance between two mappings. We éadin
r-perturbationof f if || f — k|, < r. GivenA C Y, we introduce theadius function
fa + X = R, by settingf, () to the infimum value of- for which there exists an-
perturbatiom. € P with h(z) € A. We filterX via the sublevel sets of the radius function,
settingX,.(fa) = f,'[0,7]. Forr < s, there is a magy® : H(X,.(fa)) — H(Xs(fa)).
The preimage of\ under anyr-perturbation of f will obviously be a subset oX,.(f4),
and hence there is a map on homology,: H(h~1(A)) — H(X,.(fa)). Given a class
a € H(X,.(fa)) and anr-perturbatiom of f, we say thatv is supportedoy h if « € im jp,.
Thewell groupU(r) € H(X,(fa)) is then defined [10] to consist of the classes that are
supported by all-perturbations off:

U(’r) = ﬂ im jp,.

lh=Fllp<r

Forr < s, the mapfy® restricts to a mapgJ(r) — H(X,(fa)). On the other hand,
H(X,(fa)) containsU(s) as a subgroup. It can be shown thigt) C f,"*(U(r)) whenever

r < s; see [10]. In other words, the rank of the well group can omgrdase as the thresh-
old value increases. We call a valuerofit which the rank of the well group decreases
aterminal critical valueof f,. Thewell diagramof f and A is the multiset of terminal
critical values offy, taking a value: times if the rank of the well group drops layat the
value. Often we will refer to this diagram as thebustnes®f the preimagef ~1(A). In
this paper, we focus on the ca¥e= R andP = C(X,R), lifting the usual metric on
R to P by defining||f — hll, = ||f — hll,, = sup,ex |f(z) — h(z)|. In this case, the



radius function satisfiegs (z) = inf,ca |f(2) — al. In general, the relationship between
the terminal critical values and the homological criticalues off, is not completely un-
derstood. However, i¥ = R andA is a point, we will see that the former is a subset of the
latter. We get more complicated relationships wieis an interval.

Example. Consider the toruX, as shown in Figure 3, along with the vertical height func-
tion f : X — R and the spacé = {a}. The preimage of\, f~*(A) = f, '(0), consists
of two disjoint circles on the torus; hence there are two congnts and two independent
1-cycles, all belonging to the well group at radiusFor small values of, X,.(f4) consists

of two disjoint cylinders. The homology has yet to changethfermore, although the proof
will come later, all classes still belong to the well groupshese small radii.

ta+r

Figure 3: Left: the torus and the preimage of the intefwalr, a+r]. Right: the extended persistence
diagram of the vertical height function. Each point is labeled by the dimners the corresponding
homology class. The dark shaded portions of the diagram represewittiology off ~*[a—r, a+r].

Now consider the value of shown in Figure 3. For this, the sublevel seK, =
X,.(fa) consists of two pair-of-pants glued together along two cammircles. We note
thatHy (X,.) has dropped in rank by one, while the rankHaf(X,.) has grown to three. In
contrast, the rank dfl; () is less than or equal to one. Indeed, the funcfionX — R,
defined byh = f — r, is anr-perturbation off and the zero set of the corresponding
distance functionh, ' (0) = f~'(a + r), is a single closed curve. Since the rank of the
first homology group of that curve is one, and since the rarikngf, can be no bigger than
this rank, the well groupJ; (r) can also have rank at most one. That it does in fact have
rank exactly one will follow from our results in Section 4.

Relative well groups. Since the pyramid involves relative homology groups, itnsee
wise to extend the definition of well groups into the conteixtetative homology. While
this notion is new, it follows the above ideas closely so grasenting the definition in this
background section seems appropriate. Assume again thaaweea continuous mapping
f+ X' — Y between topological spaces, as well as a subspaife”’ (X, Y) that containg
and is equipped with a metric. Given a nested paic A of subspaces df, and a radius
r > 0, we note thaK! = X,.(fa ) is a subset oK, = X,.(fa). For each-perturbatiom



of £, there is an inclusion of pairg—*(A), h~(A")) — (X, X~), which induces a map
Jn s H(R7H(A), A=Y (A)) — H(X,,X.) between relative homology groups. Tiedative
well groupU, ar)(r) is defined to be the intersection of the images of these maksnt
over allr-perturbations off:

U(A,A’)(T) = ﬂ lmjh
lh=fllp<r

When a distinction is needed, we will refer to the previousaroof well groups asbsolute
well groups.

3 Combinatorics of Homology

In this section, we present the first half of our point calsyulshowing how to read the
homology of a level or interlevel set from the extended stesice diagram. The crucial
technical concept is that of a basis of the pyramid of zigzaglutes, which we establish
by strengthening the Pyramid Theorem in [6].

Flipping abasis. We construct a basis for the pyramid one step at a time, byirilipihe
basis of one zigzag module to the next. For this purpose, wsider two zigzag modules
that differ at one position, and we assume that there is a Mdigtoris diamond serving
as a connecting bridge between the two modules at that @osibrawing the diamond
with the intersection at the bottom and the union at the tepn&5), we say the diamond
connects théower module with theuppermodule. Given a basis of the lower module, we
can show that we can construct a basis of the upper modulasththtwo bases agree on
the overlap. We refer to this operationfgping the first basis to the second.

Lemma 1. Given two zigzag modules that differ by a single Mayer-Vigtdiamond, we
can flip any basis of the lower module to a basis of the upperuteod

Proof. We give a proof by construction. Writinfe;, } for the basis of the lower zigzag
module, we describe a badis; } of the upper zigzag module that differs from the lower
one only at the positiop at which the modules differ; as in (5). We thus at oncesset e,

for all k£ # j, and the main task is then the construction ofﬁpePut briefly, our rule will
be thatv} # 0 iff an odd number of}_,, ¢, ¢}, , are non-zero. We give more specifics
via a case analysis. The cases are labeled pictorially, blétbk dots denoting non-zero
classes, showing only the positiojis- 1, 7,5 + 1.

CASEL (s, — #): We havee) | # 0 ande} = ¢}, = 0, and define} as well as the
advancing map using the Mayer-Vietoris diamond, nam@ly aj,l(eé_l), which
is non-zero by exactness and beca@,;'se 0.

CASE2 (\, — ¢*): Again we setv) = a; 1(e}_,), which is zero by exactness and
because’ # 0.

10



CASE3 (ay = ). Weset! =a; 1(ef_;) = b;(e}, ), whichin this case is non-zero.
Indeed, if it were zero, then, by exactness, the pgir ,, 0) would be in the image
of the mapb;_; @ a;. By the direct-sum decomposition of the maps in the basis, th
would imply thata; (e;) = 0, a contradiction.

CAse4 (., = ™). Wehavee) # 0ande! | =€}, | = 0. Ifthere are > 0 indicesi of
this kind, then the orthogonal complement to the image ofrtbpc;, defined below,
has rank(, as we prove shortly. We pidkclasses; that span this complement. Since
v; maps tee’; via the connecting homomorphism of the Mayer-Vietoris seme, the
homological dimension of’ is one higher than that ef,.

CASES (+ — 7+): This is symmetric to Case 2, and we s?;tﬁ bj(e§+1) = 0.

CASE6 («» — “N): This is symmetric to Case 1, and we sgt= b;(e’ ;) # 0.

Note first that we now have interval modul@l} in the lower zigzag module, and interval
modules{v’} in the upper zigzag module. To show that the latter are indeeumands,
we only need to verify that the non-zero cIassi;fDrm a basis oH(V, V'), the new group
in the upper zigzag module. Using the notation in (5), wekletenote the vector space
spanned by the paifg’_,, ¢}, ), noting thatt is a subspace di(C,C’) @ H(D, D), but
because of Case 3 it is not necessarily the entire direct ¥erconsider the subspades
of E spanned by the pairg}_,, e}, ) in each CaseV, for1 < N < 6. These subspaces
are independent and span the entire sgacdn other words, zero is the only element
common to any two of the subspaces, and the ranks of the stésspdd up to the rank of
E.

The case analysis suggests a map E — H(V, V') with ¢;((¢}_,¢},,)) = v}, if
(ef_y1,ety1) # (0,0), and zero otherwise. Sindg, = 0, this map is zero oif,, but it
is also zero ork, andE;. Furthermoreg; is injective when restricted tB;, Es, andEg.
We proceed to show that the images of these latter threensgéoes under; are inde-
pendent of one another. To derive a contradiction, we fingpsse that;(Eq1) N ¢;(Eg)
contains a non-zero class. Then there must dxist) € E; and (0,3) € Eg with
aj—1(a) = bj(B) # 0. Hence,(a, 5) € ker (a;_1 & b;), which, by exactness, tells us
thata € imb;_;. But this contradicts the direct-sum decomposition of thepiby_;.
Next, suppose that;(E;) N ¢;(E3) contains a non-zero class, which means there exists
(a,0) € E; and(y,8) € Ez such thata;_1 (o) = b;(8) # 0. As above, this implies
that (o, 8) € ker (a;_1 @ b;), and we reach the same contradiction. Finally, a symmet-
ric argument gives:;(Es) N ¢;(Es) = 0. We conclude that;(E,), ¢;(E3), andc;(Eg)
are independent subspacesHifV, V’). In Case 4, we picked a basis for the orthogonal
complement to their span; all together, we have a basi§¥t V'), as required.

Establishing a basis. The Pyramid Theorem in [6] establishes an explicit bijectie-
tween the interval modules that arise in the decompositicang two zigzags within the
pyramid. We strengthen this result by establishing basesldhe zigzag modules in such
a way that the basis elements correspond to the intervalsempéct the same bijections.
We call this abasisof the pyramid. To construct it, we note that the paths in §yr@amid
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are connected by Mayer-Vietoris diamonds. We can therdfigra basis of the level set
zigzag upwards through the entire pyramid via repeatedagifwn of Lemma 1.

Theorem 1. A basis of the level set zigzag module extends to a basis ehttie pyramid.

We now give an explicit description of how the interval maskibf the various paths in
the pyramid relate to each other. A convenient referenckeisndescription is the extended
filtration (2), which follows the upward slope through theddllie of the pyramid. Its first
half is parameterized from oo to oo, and its second half fronxo back to—oco. Let nowz
andy be two points along the upward slope, witto the left ofy. We distinguish between
the ordinary caser(< y, both in the first half), the relative case € =, both in the second
half), and the two extended cases<{ y andy < x, with x in the first half andy in the
second half). For each case, we sketch how the basis eleffrt@stinterval corresponds to
basis elements of other homology groups in Figure 4. As argépattern, the two points

+1

ordinary extended

—1i
extended relative

Figure 4: The basis element that corresponds to the intervalfrty along the upward slope maps
to all spaces between the paths of its two endpoints. The four squarestehpattern for the four
different types of intervals.

trace out two curves consisting of segments with slopé3° that reflect before they hit
the vertical sides and end at the horizontal sides of thersquénhe reason for the slopes
are Cases 1, 2, 5, and 6 in the proof of the Lemma 1, and therréastine reflection is the
local change in the zigzag structure caused by moving thanei zero group up. The two
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curves cross at one point inside the square, and the loaatitvat point is characteristic

for the case (the triangular region on the left in the ordinease, at the top and at the
bottom in the two extended cases, and on the right in theivelatise). The crossing is
caused by Case 4, in which the correspondence between tisesblaments is constructed
via the connecting homomorphism of the Mayer-Vietoris seme and therefore comes
with a shift in homological dimension.

Turning thetable. The regions in Figure 4 show all the spaces represented byspioi
the pyramid to which the basis element corresponding tortteavial [z, y] is relevant. We
are now interested in the inverse question: which basis exiésrare relevant to a given
space? More specifically: which intervals in the decompmsiof the extended filtration
(2) map to the basis of the homology group of the space reptesdy a point with coor-
dinatesa andb? We answer this question by considering the following sgibres of the
p-dimensional persistence diagram:

Apla,b] = {(z,y) € Op(f) |z <b<ytU{(z,y) € E(f) [z <ba <y},
opla,t] = {(z,y) € &(f) |b<zy <a}U{(z,y) € Rp(f) |y <a <z},
Mpla,d) = {(z,y) €&(f) la<y <blu{(z,y) e Rp(f) [a<y<b<al,
opla,b) = {(z,y) € Rp(f) |y <a <z <b},

Ap(a, 0] = {(z,y) € Op(f) | ¥ <a<y<b},

op(a,b] = {(z,y) € Op(f) la <z <b<ylu{(z,y) €&(f) [a <z <b},
Mp(a,b) = {(z,9) € Op(f) [z <a<ytU{(z,y) € E(f) |z <ab<y},
op(a,b) = {(z,y) € E(f) a<z,y <biU{(z,y) € Rp(f) |y <b <z},

where we assume thatandb are both homological regular values. To display these mul-

Figure 5: The three overlaid subdiagrams in the standard extendest@ecs diagram are unfolded
by flipping pages: keepin@(f) fixed, £(f) flips up, followed byR (f) which flips up and then to

the right. Finally, we clip the ordinary and relative subdiagrams along ttgoda and rotate the

entire design by 45 degrees so it rests on its long side. The arrows aftramh go from negative

to positive infinity.

tisets, we first introduce a new, and for our purposes morestvent, way of drawing the
extended persistence diagram. See Figure 5 for a guide. Wgetlyd domains of the three
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sub-diagrams and draw the result as a right-angled triarglthis triangle, the birth and
death axes go from-oc up to +oco and then continue on back teco. In other words,
we flip the extended subdiagram upside down and glue its @dynupper side to the
upper side of the ordinary subdiagram. Similarly, we rothe relative subdiagram by
180 degrees and glue its (formerly) right side to the right sifi¢he (flipped) extended
subdiagram. After gluing the three domains, we rotate trstgdeby —45 degrees so the
triangle rests on its longest side, consisting of the diatom the ordinary and relative
subdiagrams. The diagonal of the extended subdiagram igh®wertical symmetry axis
passing through the middle of the triangle. These changgadibeen made, the multisets

N
& %,
\(\
P>
& %,
< %

Figure 6: The triangle design of the persistence diagram showing thensegiand ¢ for the four
types of intervals in darker shading. When we collect the points to competeattk of thep-th
homology group, we shift the homological dimension of classes asrshow

referenced above are displayed in Figure 6.

Remark 2. There is a straightforward translation of this triangulaesign to the repre-
sentation of persistence advocated in [4]. Namely, dranwoaésles right-angled triangle
downward from each point in the multiset and call the hortabtower edge the corre-
spondingbar. Thebarcodeis the multiset of bars, one for each point in the diagram.
Similarly, we can translate the triangular design into tlpiare design of the pyramid by
cutting along the vertical axis, turning the right trianglgside-down, and gluing the two
triangles along their hypotenuses.

Reading interlevel sets. The purpose of the multisets defined above is to offer a conve-
nient way to read the absolute or relative homology of arrlienel set from the extended
persistence diagram. We need some definitions to combirfeualtypes into one. First,
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we let 5 be the collection of interval modules in the decompositibithe extended fil-
tration (2). As mentioned earlier, this collection is indaifive correspondence with the
points inD(f). We writeV = (B) for the abstract vector space spannedshand we let
V = {(B) | B' C B} be the collection of vector spaces spanned by subsets dfdhis.
Second, we write

Apla, bl U gptifa,b] i I =[a,b],
Apla,b) U gptifa,b) if I =[a,b),
Wil = Nt S oat] 1= (o]
Ap—1(a,b) U op(a,b) if I = (a,b),

for the region of points in the persistence diagram thatespond to the basis elements of
H,(f~*(I)), and call it apair of wings With these concepts, we have the following result,
which implies that the rank dfi,,(f~! (1)) is the number of points iV, (1):

Theorem 2. For each dimensiop and each interval whose endpoints are homological
regular values, there exists an isomorphism that takgéf ' (7)) to the vector space
G,(I) € V spanned by the basis vectors corresponding to the pointg,ify).

Proof. Write B = {e'} and let{v'} be the basis of the groug,(f~'(I)), wherel is an
interval with endpoints < b that can be closed, closed-open, open-closed, or open. The
claimed isomorphism is then the linear mapH,,(f~*(1)) — V defined byy(v?) = {e’}

for all non-zerov'.

To understand why the image gfconsists of the intervals that correspond to the points
in W,(I), we need to recall the transformation rules sketched inrEigu Consider for
example the closed interval cages [a, b], for whichW,(I) = Ap[a, b]Ugp+1[a, b]. Since
the interval is closed, the homology group is representetheypoint(a, b) in the lower
triangular region. To lie in the dark shaded region, thimpaonust satisfy the constraint
x < b < yinthe ordinary case; < b anda < y in the first extended case, and< b
anda < y without dimension shift in the second extended case. Thespialities define
Apla, b]. Furthermore, we gét< x andy < a with dimension shift in the second extended
case, and; < a < x, again with dimension shift, in the relative case. Theseuiadities
defineg,+1[a, b], which completes the proof in the closed case. For a prodietiosed-
open, open-closed, and open cases, note that the poineseeingH,(f~* (1)) are found
in the right, left, and top triangular region of the pyramahd then argue in a similar
fashion.

4 Combinatorics of Robustness

The definition of well group given in Section 2 involves an oaatable number of pertur-

bations, which give rise to the intersection of a potentilfge number of subgroups, and
as such does not seem amenable to computation. In thisrsestashow that the situation

in the real-valued case is simpler, and that we are able tbthesabsolute and relative well
groups directly from the extended persistence diagram. &gnbwith a consequence of
the Mayer-Vietoris sequence, which provides the main teehimgredient of our proofs.
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A corollary of Mayer-Vietoris. For convenience, we establish the following notational
convention, wherein we reuse the same letter in differemtisfoWe will need it for abso-
lute and for relative homology groups. To avoid repetitiorg, state it now for the more
general relative case. Lettifd C U andV’ C V be pairs of topological spaces, we
write (U, U’) — (V, V") if U C VandU’ C V'. This inclusion of pairs induces a map
u: H(U,U’) — H(V,V’") on homology groups, and we writ¢ = im u for the image of
this map. Note thall is always a subgroup &f(V, V'), namely the subgroup of homology
classes that have a chain representative carrig@by’). Note also that the rank a&f can
never exceed the rank 6f(V, V’). Suppose that, furthermor€l, T') — (U,U’). Then,
from the sequence of map§T,T') — H(U,U’) — H(V,V’), we see thal, the image
of H(T, T') in H(V,V’), must be a subgroup &f. The following lemma is a direct con-
sequence of the exactness of the Mayer-Vietoris sequenawever, we will use it often
enough that it seems reasonable to state and prove it fgrmall

Lemma 2. Suppose the pair of topological spacés C V can be decomposed & =
CuDandV' =C'UD’, whereC’' C CandD’' C D. Set(E,E’) = (CnD,C' nD'). If
aclassa € H(V,V’) belongs toC and toD, thena also belongs td.

Proof. Following our convention, we use the notation H(C,C’) — H(V,V’) for the
map on homology induced by the inclusion(@, C’) in (V,V’). Similarly, we writed :

H(D,D’) — H(V,V’) ande : H(E,E’) — H(V,V’), as well ag, : H(E,E') — H(C,C’)

ande, : H(E,E') — H(D,D’). Note thatC = imc, D = imd, andE = ime. Consider
now the relevant portion of the Mayer-Vietoris sequence¥ary’):

(ec,ed)

H(E,E') H(C,C') @ H(D,D') ——% H(V, V).

By assumptiong € C, so there exists some. € H(C, C’) such that(a.) = «. Similarly,

there exists am; € H(D,D') such thatd(ay) = «. This implies that the paita., o)
belongs to the kernel af — d, and thus also, by exactness of the sequence, belongs to the
image of(e., e4). Hence, there exists. € H(E,E’) with e.(a.) = a. andeg(a.) = aq.

In particular, since = c o e., we haves(a.) = «, and thereforev € E as claimed.

In the typical application of Lemma 2, we will construct fuetr pairs(T,T') —
(C,C") and(B,B’) — (D,D’) such that € T N B. From the remark above, we know
thatT € CandB C D. The lemma then applies and we can conclude ¢hat E, as
before.

Thewell group of alevel set. As a warm-up exercise, we first consider the case in which
A is a single point. More specifically, we suppose that we hax@apact topological space
X and a functionf : X — R, and we find the well groupd(r) = Ua(r), whereA = {a}

is some point on the real line. In this cag,(fa) = f, '[0,7] = f~'[a —r,a +7]. TO
state the formula, we distinguish two particular subspades, = X,.(fa), namely the
top level setT, = f~'(a + r), and thebottom level setB,, = f~!(a — r). Using the
convention from before, we writ€. andB,. for the images oH(T,) andH(B,.) in H(X,.).

Theorem 3. U(r) =T, N B,, for everyr > 0.
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Proof. We prove equality by establishing the two inclusions in tuifo showU(r) C
T, N B, consider an arbitrary classe U(r). We defineh, = f —r andhpe, = f + 7
and note that they areperturbations off, with ht‘O}D(a) = T, andh, ) (a) = B,. By
definition of the well groupg is supported by every-perturbation off, and therefore by
htop @nd byhy,e. It follows thata € T, N B,.. To showT, N B, C U(r), we consider an
arbitrary classv € T, N B,. and leth be an arbitrary-perturbation off. To finish the proof,
we need to show that is supported by:. We defineC, = h~'[a, ) N X, andD, =
h=1(—o00,a] N X,. Note thatC, UD, = X, while C, N D, = h~!(a). Furthermore,
the inequality|| — f||, < r implies thatT, C C, andB, C D,. By Lemma 2,a is
supported by:~!(a), as required.

Remark 3. Theorem 3 implies that the well group for a Morse functiprcan change
only at critical values of the functiofi,, whereA = {a}. In other words, terminal critical
values are, in this simple context, just ordinary criticalwes. Indeed, if, s] is an interval
that contains no critical values ofs, then there is a deformation retractiof,(f,) —
X, (fa) providing an isomorphisrhl (X (fa)) — H(X,.(fa)). Furthermore, this retraction
mapsT; ontoT,., in such a way that that the imagestd{T,.) andH(Ty) in H(X(f4)) are
identical. Similarly, the images ¢1(B,.) andH(B;) in H(X,(fs)) are identical. Hence
the well groupdJ(r) andU(s) are isomorphic.

The well group of an interlevel set. We generalize from a point to an interval, which
can be closed, closed-open, open-closed, or open. To tHatendefine the spaces and
maps so that the formula for the well group is the same in alt fases, and indeed the
same as in Theorem 3 above. Assume: b, setA = [a,b], and letA’ C {a,b}. We
thus getX, = X,.(fa) = f~la — r,b+ r] andX] = X,.(fa’), which is the empty set,
fYo—r,b+r], f~t{a—r, a+r], or the union of these two interlevel sets. Correspondingly
we define théop andbottom interlevel sets

T, = flatrberl, T C {7 atn), 7 0+n)}
By = fla—nb-vl Bl C {7 amn) /-

see Figure 7. The pai(¥,., T”.) and(B,., B".) include into(X,., X ) in all four cases. Still
using the notational convention from above, we wiitandB,. for the images oH(T,., T".)
andH(B,,B;.) in H(X,,, X]). The formula for the well groug)(r) = U, 4, (r), is then,
unsurprisingly:

Theorem 4. U(r) = T, N B,., for everyr > 0.

Proof. We give the argument for the most complicated of the foursaskend’ = {a, b}.
The proofs of the other three cases are simpler versionseadme argument. We may
assumer +r < b —r, elseX,. = X/, which implies that all groups in the claimed formula
are zero and so we are done. To prove the incluigr) C T, N B,., we consider the two
r-perturbations,, = f —r andhy,o, = f +r, as before. Note thaf,, T,.) = h,t‘();(a, b)
and(B,.,B.) = h; . (a,b), and the desired inclusion follows from the definition oftele
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Figure 7: Each vertical strip represeisand the shaded portions ma&,., C..) and(T,., T,.) on
the left, (X, X}.) in the middle, andB,, B,.) and(D,., D}.) on the right.

well groups. To provél,. N B, C U(r), we choose an arbitrary clagsc T, N B,. and an
r-perturbatiom of f. Furthermore, we introduce the following pairs of subsgace

C, = hl'a,00)N f(~o0,b+ 1],
C, (hta,00) N f~H(—o00,a+7]) U (h™[b,00) N fH(—o0,b+ 7)),
D, = h Y(—00,b] N fta—r 00),
D, = (A (=c0,a] N/ a—1,00)) U (b1 (=00,8 N f b= 1,00));

see Figure 7 for a depiction of the open case. Sihde an r-perturbation, we have
(T,,T,) — (C,,C!) and similarly (B,,B!) — (D,,D/). This impliesT, C C, and
B, C D,, and thereforex € C, N D,. lItis easy to see thatC, UD,,C,. UD!) =
(X,,X.), and also thatC, N D,.,C. N D)) = (h~(A),h~(A")). Lemma 2 thus implies
a € (h~1(A),h=1(A")). Since this is true for alt-perturbations:, we haven € U(r), as
required.

Including intervals. We again need some definitions to unify the four cases into one
Given two intervald and.J of the same type, we sdyincludesinto J, denoted ag — J,

if f~1(I) includes as a pair irf ~1(.J). Unfolding the definition of the four types and
assuminge < b < ¢ < d, we havelb, c] — [a,d], [b,d) — [a,c), (a,c] < (b,d], and
(a,d) — (b,c); compare this with the Mayer-Vietoris diamonds in Figure Quppose
now that we have interval§ — J, both of the same type. By Theorem 2, there are
isomorphisms that takel,(f=*(1)) andH,(f~(J)) to groupsG,(I) andG,(J) in V.
The inclusion induces a map on homology, which composes théhe isomorphisms to
giveg : G,(I) = G,(J). On the other hand, since the two groups are membeys thiere

is also a natural map froi@,(I) to G,(J), namely the one that restricts to the identity on
the span of their shared vectors and is zero otherwise. Nptisimgly, g is exactly that
map. We formalize this claim and give a proof.
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Theorem 5. Let] — J and letG,(I), G,(J) be the corresponding-dimensional groups
in V. Then the image of : G,(I) — G,(J) is a vector space iV, and its basis is in
bijection with the multisetV,, (1) N W, (J).

Proof. To restate the theorem, we consider the diagram defined thothelogy groups of
the preimages of the including intervalss— .J, and the corresponding vector space¥in

Ho(f 1)) == Hu(f ()

T 5
G,(I) £ G, ().

The vertical maps are isomorphisms given by Theorem 2. Themisinduced by inclu-
sion, andg maps a basis vector &, (I) to the same basis vector 6f,(J), if it exists,
and to zero, otherwise. Hence, the basimof consists of the vectors that are common to
the bases 06, (I) andG,(J). This theorem states that we can gdty composingh with
the two isomorphisms. Equivalently, the diagram commutesprove commutativity, we
consider again the zigzag modules drawn as monotonic pathe isquare; see Figure 2.
Sincel — J, we can find two non-crossing modules, one contaitlpgf —* (7)) and the
other containindd,,(f~*(J)). To get a basis foim h, we translate intervals from one path
to the other, keeping only the ones that cover baglaf —' (1)) andH,(f~*(.J)). Further
translating these intervals to the hypotenuse gives thesponding points in the persis-
tence diagram. These points are precisely the ones shandg, @) andW,(.J). In other
words,im g in V is isomorphic tdm h, as desired. m]

Reading robustness. Theorem 5 allows us to compute the well groups and the well dia
gram associated to a single intervBk= (A, A’). The homology off ~!(I) can be read off
the persistence diagram ¢f as stated in Theorem 2. Similarly, the homology¥f, X/),
whereX, = X, (fs) andX! = X, (f1), can be read off the same diagram, as we now
explain. By Theorem 4, the well group feoris the intersection of the images of the maps
t, : Hp(T,, T]) — H,(X,,X]) andb, : H,(B,,B;) — H,(X,,X!) induced by the in-
clusions. By Theorem 5, this intersection corresponds taiegd rectangles within the
region of f~1(I); see the intersection betwe#h, () and the dotted rectangles in Fig-
ure 8. In the closed case, this intersection gradually ees¢d infinity, while in the two
half-open cases, the intersection disappears wheaches half the length of the interval.
Correspondingly, the well group shrinks gradually in theseld case, while it vanishes at
or beforer = (b — a)/2 in the half-open cases. Similarly, the well group vanishégmnv

r reachegb — a)/2 in the open case. However, here it vanishes abruptly. Maeisely,
the range of the maps andb,., whichisH, (f~*(a +r,b—r)), approaches the homology
group of the suspension of the level setat- b)/2, whenr goes towardb — a) /2, before

it suddenly becomes zero whemeaches that limit.

In all four cases, a point contributes to the well group untiéaches a value at which
the shrinking intersection no longer contains the poimdkig this value of- is easy since
both rectangles shrink uniformly along all of their sidesonSider for example the case
I = [a,b] illustrated by the upper left design in Figure 8. For a pdinty) € D(f), the
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Figure 8: Reading the robust homology in the four different cases.shiaded region gives the basis
of H,(f~'(I)), while the dark shaded region gives the basis of the well subgtdy(p,).

value ofr at which the point drops out of the relevant region is

min{b —x,y — b} if (x,y) € O(f) N Ala,b],
min{b —z,y —a} if (z,y) € E(f) N Aa,b],
min{z —b,a —y} if (x,y) € E(f) N ola,b],
min{z —a,a —y} if (z,y) € R(f) N ola,bl.

The well diagram is the multiset of the values we get from thigs in the persistence
diagram.

Measuring the difference.  We can interpret the rank of the well group as a measure of
the similarity between the image of the map: (T,,T,) — (X,,X!) and the image of
the mapb,. : (B,,B!) — (X,,X]). Alternatively, we could use the cokernels of these
two maps to measure their difference. Indeed, it is not diffito prove counterparts of
Theorem 5 for cokernels as well as for kernels.

Theorem 6. Let] — J and letG,(I), G,(J) be the corresponding-dimensional groups
in V. Then the kernel and cokernelgt G, (I) — G,(.J) are vector spaces i, the basis
of ker g is in bijection withW,(I) — W, (J), and the basis ofok g is in bijection with

Wy (J) = Wp(I).

To measure the difference, we would therefore take the lfadg® sum of the two
cokernels. Consider for example the open case. By the alkovmé, we get a basis of
cok t, andcok b, by settingJ = (a+r,b—r) and first setting to I; = (a+r,b+ ) and
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second tals = (a — r,b — r). The basis of the sunepk t,. 4+ cok b, is in bijection with
the union of the two multisets of points, whichlg, (J) — W, (I1) — W, (I2).

5 Discussion

The main contribution of this paper is the introduction o# ghoint calculus for homol-
ogy computations of level and interlevel sets. This congxrimterlevel sets defined by
closed, half-open, and open intervals, images, kernetscakernels of maps induced by
inclusions, and the robustness of homology as defined bygralips. The point calculus
provides a compact interface to a wealth of homologicalrmition that can be useful to
researchers with and without background in algebraic tupolFor the expert, it provides
a compact summary of information that may be used to forrautanjectures about the
topology of spaces and of functions. For the non-experitteeface offers an intuitive ap-
proach to understand the topology of datasets that by-palssa@ntroduction of algebraic
topology foundations. It is directly applicable to datalie form of continuous functions,
which is common in medical imaging and in scientific visuatian.

We conclude by formulating an open question aimed at cakgihon two- and higher-
dimensional notions of robustness. This paper providesudico to computing robustness
whenY = R and perturbations are measured usinglthe-metric, and [3] shows that our
results also hold for a broader class of metric function epatn [9], the authors give an
algorithm whenX is an orientabl@-manifold,Y = R?, andA is a point. Algorithms for
other cases are not yet known.
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