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Abstract
Given a continuous functionf : X→ R on a topological space, we consider the preimages
of intervals and their homology groups and show how to read the ranks of these groups
from the extended persistence diagram off . In addition, we quantify the robustness of the
homology classes under perturbations off using well groups, and we show how to read
the ranks of these groups from the same extended persistencediagram. The special case
X = R

3 has ramifications in the fields of medical imaging and scientific visualization.
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1 Introduction
The work reported in this paper has two motivations, one theoretical and the other practical.
The former is the recent introduction ofwell groupsin the study of mappingsf : X → Y

between topological spaces. Assuming a metric space of perturbations, we have such a
group for each subspaceA ⊆ Y, each boundr ≥ 0 on the magnitude of the perturbation,
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and each homological dimensionp. These groups, and the diagrams that they generate,
extend the boolean concept of transversality to a real-valued measure we refer to asrobust-
ness. Using this measure, we can quantify the robustness of a fixedpoint of a mapping [10]
and prove the stability of the apparent contour of a mapping from an orientable2-manifold
toR

2 [9]. In this paper, we contribute to the general understanding of well groups by study-
ing the real-valued case. Along the way, we also extend the general theory of well groups
to incorporate relative well groups. Specifically,

I. we give a general definition of relative well groups given amappingf : X → Y, a
numberr ≥ 0, and a nested pairA′ ⊆ A of subspaces ofY, and

II. we characterize the relative well groups off : X→ R wheneverA is an interval and
A

′ is a subset of the endpoints.

Applications of this theoretical work are anticipated in medical imaging and scientific vi-
sualization, where data in the form of real-valued functions is common. To mention one
example, it is common to acquire information about internalorgans through a magnetic
resonance image, which results in a3-dimensional array of intensity values, best viewed as
a function from the unit cube to the real line. The predominant method for highlighting or
extracting relevant substructures of this image uses preimages of real values. Generically,
these are2-manifolds, commonly referred to ascontoursor isosurfaces[12]. Sometimes,
these2-manifolds are complemented by preimages of intervals, referred to asinterval vol-
umesin visualization [11]. In this paper, we call the preimage ofa value alevel set, and
the preimage of an interval aninterlevel set, in which the interval can be closed, open, or
half-open. We contribute to the state-of-the-art by

III. explaining how the homology of level and interlevel sets can be read off the extended
persistence diagram of the function, and

IV. describing how the robustness of features in level and interlevel sets, quantified
through well groups, can be read off the same diagram.

Our results add up to a ‘point calculus’ in algebraic topology for mining the rich homolog-
ical information contained in the extended persistence diagram of a real-valued function.
The compactness of the data representation and the efficiency of the mining operations
make the diagram an attractive graphical interface tool forstudying3-dimensional images.
We view this tool as complementary to the contour spectra described in [1], which plot con-
tinuously varying quantities, such as area and volume, across the family of level sets. The
most novel aspect of our diagram is the robustness information, which has previously not
been available. This novelty is combined with the unprecedented ease with which homo-
logical information is accessible. There is also evidence for the practicality of the interface
provided by the fast oct-tree implementation of the described concepts [2], which has been
used to study3-dimensional images of root systems of agricultural plants.

Outline. In Section 2, we review necessary background on persistence, zigzag modules,
and well groups. In Section 3, we explain the point calculus for interlevel sets. In Section
4, we extend the point calculus to include the robustness information provided by the well
groups. Finally, Section 5 concludes the paper with a brief discussion of the contributions
and of future research directions.
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2 Background
We divide the background material into three parts, introducing persistence and extended
persistence in Section 2.1, explaining the extension to zigzag modules and level set pyra-
mids in Section 2.2, and defining absolute and relative well groups in Section 2.3.

2.1 Forward Maps

Traditional persistent homology is based on a nested sequence of spaces, which induces a
linear sequence of homology groups connected by maps from left to right. We describe this
concept in two steps.

Persistence. The persistence of homology classes along a filtration of a topological space
can be defined in a quite general context [8]. For this paper, we need only a particular
type of filtration, one defined by the sublevel sets of a tame function. Given a real-valued
functionf on a compact topological spaceX, we consider the filtration ofX via thesub-
level setsXr(f) = f−1(−∞, r], for all real valuesr. Wheneverr < s, the inclusion
Xr(f) →֒ Xs(f) induces maps on the homology groupsHp(Xr(f)) → Hp(Xs(f)), for
each dimensionp. Here we will use field coefficients so that the homology groups are
vector spaces over the field. Often we will suppress the homological dimension from our
notation, writingH(Xr(f)) =

⊕

p Hp(Xr(f)); in this case, we will always assume that
all mapsH(Xr(f)) → H(Xs(f)) decompose into the direct sum of maps on each factor.
A real valuer is called ahomological regular valueof f if there existsǫ > 0 such that
the inclusionXr−δ(f) →֒ Xr+δ(f) induces an isomorphism between homology groups for
everyδ < ǫ. If r is not a homological regular value, then it is ahomological critical value.
We say thatf is tameif it has finitely many homological critical values and if thehomol-
ogy groups of each sublevel set have finite rank. Assuming that f is tame, we enumerate
its homological critical valuesr1 < r2 < . . . < rn. Choosingn + 1 homological regular
valuessi such thats0 < r1 < s1 < . . . < rn < sn, we putXi = Xsi(f). The inclusions
Xi →֒ Xj induce mapsfi,j : H(Xi) → H(Xj) for 0 ≤ i ≤ j ≤ n and give the following
filtration:

0 = H(X0)→ H(X1)→ . . .→ H(Xn) = H(X). (1)

We say a classα ∈ H(Xi) is born atXi if α 6∈ im fi−1,i. A classα born atXi is said to
die enteringXj if fi,j(α) ∈ im fi−1,j but fi,j−1(α) 6∈ im fi−1,j−1. We remark that if a
classα is born atXi, then every class in the coset[α] = α + im fi−1,i is born at the same
time. Of course, whenever such anα dies enteringXj , the entire coset[α] also dies with
it. We represent[α] graphically as the point(ri, rj) in the plane. Drawing all birth-death
pairs as points, we get diagrams like the ones sketched in Figures 1 and 3. Supposing that
b ∈ R is different from all homological critical values, we collect all points in the upper-
left quadrant defined by(b, b) to get all classes born beforeb and still alive; see the left
diagram in Figure 1. Their number is the rank of the homology group of the sublevel set,
rankH(Xb(f)).

Observe that we really need the extended plane to draw the points because some classes
are born but never die, so the corresponding points have∞ as their second coordinates.
There is an elegant way around this minor annoyance, which wenow describe.
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Figure 1: From left to right: the ordinary, extended, and relative subdiagrams ofD(f). The number
of points (not shown) in the dark shaded regions is equal to the rank of the homology group of the
sublevel set defined byb.

Extended persistence. Since the filtration in (1) begins with the zero group but ends
with a potentially nonzero group, it is possible to have classes that are born but never die.
We call theseessentialclasses, as they represent the actual homology of the spaceX. To
measure the persistence of the essential classes, we follow[7] and extend the sequence in
(1) using relative homology groups. More precisely, we consider for eachi thesuperlevel
setXi = f−1[sn−i,∞). Note that we haveX0 = ∅ andXn = X by compactness. For
i < j, the inclusionXi →֒ X

j induces a map on relative homologyH(X,Xi)→ H(X,Xj).
These maps therefore give rise to the following extended filtration:

0 = H(X0)→ H(X1)→ . . .→ H(Xn) = H(X,X0)→ . . .→ H(X,Xn) = 0. (2)

We extend the notions of birth and death in the obvious way. Since this filtration begins
and ends with the zero group, all classes eventually die. We also extend the graphical
representation of the information contained by formingpersistence diagrams, which we
now introduce more formally. We have such a diagram for each dimensionp; see Figure
1. Each diagram is a multiset of points in the plane, containing one point(ri, rj) for each
coset of classes that is born atXi or (X,Xn−i+1), and dies enteringXj or (X,Xn−j+1).
In some circumstances, it is convenient to add the points on the diagonal to the diagram,
but in this paper, we will refrain from doing so. The persistence diagram contains three
important subdiagrams, corresponding to three different combinations of birth and death
location. Theordinary subdiagram,Op(f), represents classes that are born and die during
the first half of (2). Therelative subdiagram, Rp(f), represents classes that are born and
die during the second half. Finally, theextended subdiagram, Ep(f), represents classes that
are born during the first half and die during the second half ofthe extended filtration. Note
that points inOp(f) all lie above the main diagonal while points inRp(f) all lie below. On
the other hand,Ep(f) may contain points on either side of the main diagonal. ByD(f), we
mean the points of all diagrams in all dimensions. Drawing these subdiagrams side by side
can be cumbersome, and drawing them on top of each other can beconfusing. In Section
3, we will introduce a new design that addresses these concerns.
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2.2 Mixed Maps

We note that the homology groups in the extended filtration of(2), or in the shorter filtration
of (1), are all vector spaces over a fixed field and that the mapsbetween them are all linear
maps. In [5], Carlsson and de Silva generalize this situation to sequences of vector spaces
that are connected by maps going from left to right or from right to left. We now briefly
review their work as well as the related work on level set zigzag modules in [6].

Zigzag modules. A zigzag moduleW is a finite sequence of vector spaces connected by
linear maps which either go forward or backward between consecutive spaces:

W1 ↔W2 ↔ . . .↔Wj ↔Wj+1 ↔ . . .↔Wn. (3)

If the arrow advances fromWj to Wj+1, then we denote the corresponding linear map as
aj : Wj → Wj+1; otherwise, we writebj : Wj+1 → Wj . A submoduleU of W is a
collection of linear subspacesUj ⊆ Wj such thataj(Uj) ⊆ Uj+1 or bj(Uj+1) ⊆ Uj ,
whichever is the case forj. A submoduleU is a summandif there is a complementary
submoduleV, meaning every vector space splits as a direct sumWj = Uj ⊕ Vj . The
authors in [5] prove that every zigzag module can be split into indecomposable summands
of a certain form, and, in particular, it has a basis, a concept we now describe. First,
we suppose that we have, for eachj, a set of elementsui

j ∈ Wj such that the nonzero
elements form a basis ofWj . In other words, we can decomposeWj into the direct sum
Wj =

⊕

i〈u
i
j〉, noting that some of the terms on the right hand side may be zero. We

use the superscripts to form correspondences between the bases. Specifically, we require
aj(u

i
j) = ui

j+1, or bj(ui
j+1) = ui

j , depending on the case. Furthermore, we assume that,
for each superscripti, there existx ≤ y such thatui

j 6= 0 iff j ∈ [x, y]. In other words, for
each fixedi, we have a submodule

〈ui
1〉 ↔ 〈u

i
2〉 ↔ . . .↔ 〈ui

j〉 ↔ 〈u
i
j+1〉 ↔ . . .↔ 〈ui

n〉 (4)

of W in which the non-zero vector spaces are1-dimensional and form a single contiguous
subsequence connected by identity maps. Calling such a submodule aninterval module, we
think of it as being in correspondence with the closed interval [x, y]. The collection{ui

j}
is abasisfor the zigzag module ifW can be decomposed into the direct sum of the interval
modules (4). Equivalently, the collection is a basis forW if each mapaj is the direct sum
of the maps〈ui

j〉 → 〈u
i
j+1〉, and each mapbj is the direct sum of the maps〈ui

j+1〉 → 〈u
i
j〉,

whichever one is defined.
Although a zigzag moduleW can have many different bases, the set of intervals asso-

ciated to any such basis will be unique [5]. For example, any basis for the zigzag module
given by the filtration in (1) will have one interval[x, y] for each coset of classes born at
Xx and dying enteringXy.

Mayer-Vietoris diamonds. We are interested in an elementary operation that connects
two minimally different zigzag modules: aMayer-Vietoris diamond[5]. We suppose that
we have two zigzag modules differing only at positionj, and that at this position we have
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a diamond of the following form:

H(V,V′)

←→ H(C,C′) H(D,D′)←→

H(E,E′)

77♦♦♦♦♦♦♦♦

aj−1
gg❖❖❖❖❖❖❖❖

bj

77♦♦♦♦♦♦♦♦

aj
gg❖❖❖❖❖❖❖❖

bj−1

, (5)

where we show the more general, relative form in which the primed spaces are subspaces
of the corresponding unprimed ones, and we haveE = C ∩ D, E′ = C

′ ∩ D
′, V = C ∪ D,

andV′ = C
′ ∪ D

′. We get the more special, absolute form by settingC
′ = D

′ = E
′ =

V
′ = ∅. The name of the diamond is justified by the long exact sequence we get by reading

the diamond from bottom to top and iterating through the dimensions. When the primed
spaces are all empty, this gives the classic version of the Mayer-Vietoris sequence, and
more generally, we get the relative version:

. . .→ Hp(E,E
′)→ Hp(C,C

′)⊕ Hp(D,D
′)→ Hp(V,V

′)→ Hp−1(E,E
′)→ . . . ;

see e.g. [13]. Importantly, this sequence is exact, which means that the image of each map
equals the kernel of the next map.

Such diamonds arise in the following context. Consider again the functionf : X → R

and the interleaved sequence of homological regular and critical values:s0 < r1 < s1 <
. . . < rn < sn. SettingW2j = H(f−1(sj)) andW2j+1 = H(f−1[sj , sj+1]), we get a
zigzag module of length2n+ 1, which, following [6], we refer to as thelevel set zigzagof
f . It starts and ends with0 and alternates between advancing mapsa2j and backward
mapsb2j+1. From this module, we can create a new one by fixing an indexj, sub-
stituting [sj , sj+2] = [sj , sj+1] ∪ [sj+1, sj+2] for sj+1 = [sj , sj+1] ∩ [sj+1, sj+2], and
leaving all other groups unchanged; of course we also reverse the two maps involving the
changed space. This produces a new zigzag module which differs from the old via a Mayer-
Vietoris diamond. This construction can be generalized by flipping between intersections
and unions of larger intervals and pairs of intervals, thus producing a whole array of zigzag
modules which differ via Mayer-Vietoris diamonds.

The pyramid. Starting with the level set zigzag, we get an array of zigzag modules which
are best described as monotonic paths that go diagonally up and down, always from left to
right. The array of such paths is connected within a pyramidal structure, which we now
describe. As a graphical guide, we consider the square drawnin Figure 2. We give it a
coordinate system by parameterizing the downward slope from∞ at the upper left, to−∞
in the middle, and back up to∞ at the lower right. Similarly, we parameterize the upward
slope from−∞ at the lower left, to∞ in the middle, and back to−∞ at the upper right.
The two slopes divide the square into four triangular regions, each containing a point with
coordinatesa andb for every choice ofa ≤ b. We interpret this point differently in each
of the regions. To explain this interpretation, it is convenient to introduce a shorthand that
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uses open set notation for pairs of closed sets, writingA− A
′ for (A,A′). Specifically,

f−1(x, y] = (f−1(−∞, y], f−1(−∞, x]),

f−1[x, y) = (f−1[x,∞), f−1[y,∞)),

f−1(x, y) = (f−1(−∞,∞), f−1(−∞, x] ∪ f−1[y,∞)).

If a point with coordinatesx andy lies in the bottom region, we think of it as the space

x y z

y

x

w

w

wxyz

(x, z]

(w, z]

(w, y]

(x, y]

[w, z]

[x, z]

[x, y]

[w, y]

[x, z)

[w, z)

[w, y)

[x, y)

(w, z)

(x, z)

(x, y)

(w, y)

zx

w

y

z

Figure 2: Points in the pyramid are absolute and relative homology groups. Monotonic paths are
zigzag modules, any two of which differ by a finite number of Mayer-Vietoris diamonds.

f−1[x, y]. However, if the point lies in the left, right, or top region,we think of it as
f−1(x, y], f−1[x, y), or f−1(x, y), respectively. If we now takew < x < y < z and
consider the points(w, y), (w, z), (x, y), and(x, z), we get a Mayer-Vietoris diamond in
each region; see Figure 2. This is easiest to see in the closedinterval case since[x, y] =
[w, y] ∩ [x, z] and [w, z] = [w, y] ∪ [x, z]. In the closed-open case, we have[x,∞) =
[w,∞) ∩ [x,∞) and[w,∞) = [w,∞) ∪ [x,∞) as well as[z,∞) = [z,∞) ∩ [y,∞) and
[y,∞) = [z,∞) ∪ [y,∞). Similar computations verify the diamond in the remaining two
cases.

By repeated application of the diamond, we can generate any monotonic path from the
one along the bottom edge of the square. Each path is thus decorated by spaces as de-
scribed, and applying the homology functor gives a zigzag module of absolute and relative
homology groups. The latter arise when we move the left or right end of the path, which
can be done without the Mayer-Vietoris diamond because the corresponding spaces are and
stay empty so that the module remains unchanged. Besides thelevel set zigzag along the
bottom edge, we are particularly interested in the path along the upward slope, which trans-
lates into the extended filtration of (2). Its midpoint is(−∞,∞), the center of the square,
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which results inH(f−1(−∞,∞)) = H(X). For this reason, we think of the center as the
apex of a pyramid, as viewed from above.

Remark 1. As a partial justification for the notation with open sets, wemention that the ho-
mology group of the preimage of the interval(x, y), if computed with infinite chains, is iso-
morphic to the relative homology group of(f−1[x, y], f−1(x) ∪ f−1(y)). By excision, this
is isomorphic to the relative homology group of(f−1(−∞,∞], f−1(−∞, x] ∪ f−1[y,∞)).

2.3 Perturbations

The reader who wishes to learn how to read the homology of interlevel sets can safely skip
Section 2.3 and now continue with Section 3. However, to differentiate the robust from
the non-robust homological information in these readings,we need to first understand the
subgroups of homology that give meaning to this concept.

Well groups. Suppose that we have a continuous mappingf : X → Y between topo-
logical spaces. Given a subsetA ⊆ Y, we review here the definition of the well groups
UA(r) for each radiusr ≥ 0. WhenA is clear from context, we will drop it from the
notation and simply writeU(r), by which we mean the direct sum of groupsUp(r), for
each homological dimensionp. We will also need the assumption thatf−1(A) has homol-
ogy groups of finite rank in each dimension. In addition to themappingf , we assume a
subspaceP of C(X,Y), the space of continuous mappings fromX to Y, requiring thatP
containsf . For example,P might consist of all mappings homotopic tof . We assume
a metric onP and write‖f − h‖P for the distance between two mappings. We callh an
r-perturbationof f if ‖f − h‖P ≤ r. GivenA ⊆ Y, we introduce theradius function,
fA : X → R, by settingfA(x) to the infimum value ofr for which there exists anr-
perturbationh ∈ P with h(x) ∈ A. We filterX via the sublevel sets of the radius function,
settingXr(fA) = f−1

A
[0, r]. For r < s, there is a mapfr,s

A
: H(Xr(fA)) → H(Xs(fA)).

The preimage ofA under anyr-perturbationh of f will obviously be a subset ofXr(fA),
and hence there is a map on homology,jh : H(h−1(A)) → H(Xr(fA)). Given a class
α ∈ H(Xr(fA)) and anr-perturbationh of f , we say thatα is supportedby h if α ∈ im jh.
The well groupU(r) ⊆ H(Xr(fA)) is then defined [10] to consist of the classes that are
supported by allr-perturbations off :

U(r) =
⋂

‖h−f‖
P
≤r

im jh.

For r < s, the mapfr,s
A

restricts to a mapU(r) → H(Xs(fA)). On the other hand,
H(Xs(fA)) containsU(s) as a subgroup. It can be shown thatU(s) ⊆ f

r,s
A

(U(r)) whenever
r < s; see [10]. In other words, the rank of the well group can only decrease as the thresh-
old value increases. We call a value ofr at which the rank of the well group decreases
a terminal critical valueof fA. Thewell diagramof f andA is the multiset of terminal
critical values offA, taking a valuek times if the rank of the well group drops byk at the
value. Often we will refer to this diagram as therobustnessof the preimagef−1(A). In
this paper, we focus on the caseY = R andP = C(X,R), lifting the usual metric on
R to P by defining‖f − h‖P = ‖f − h‖∞ = supx∈X |f(x) − h(x)|. In this case, the
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radius function satisfiesfA(x) = infa∈A |f(x) − a|. In general, the relationship between
the terminal critical values and the homological critical values offA is not completely un-
derstood. However, ifY = R andA is a point, we will see that the former is a subset of the
latter. We get more complicated relationships whenA is an interval.

Example. Consider the torusX, as shown in Figure 3, along with the vertical height func-
tion f : X → R and the spaceA = {a}. The preimage ofA, f−1(A) = f−1

A
(0), consists

of two disjoint circles on the torus; hence there are two components and two independent
1-cycles, all belonging to the well group at radius0. For small values ofr, Xr(fA) consists
of two disjoint cylinders. The homology has yet to change; furthermore, although the proof
will come later, all classes still belong to the well groups at these small radii.

a− r

a

a + r

1

2

1

0

Figure 3: Left: the torus and the preimage of the interval[a−r, a+r]. Right: the extended persistence
diagram of the vertical height function. Each point is labeled by the dimension of the corresponding
homology class. The dark shaded portions of the diagram represent the homology off−1[a−r, a+r].

Now consider the value ofr shown in Figure 3. For thisr, the sublevel setXr =
Xr(fA) consists of two pair-of-pants glued together along two common circles. We note
thatH0(Xr) has dropped in rank by one, while the rank ofH1(Xr) has grown to three. In
contrast, the rank ofU1(r) is less than or equal to one. Indeed, the functionh : X → R,
defined byh = f − r, is anr-perturbation off and the zero set of the corresponding
distance function,h−1

A
(0) = f−1(a + r), is a single closed curve. Since the rank of the

first homology group of that curve is one, and since the rank ofim jh can be no bigger than
this rank, the well groupU1(r) can also have rank at most one. That it does in fact have
rank exactly one will follow from our results in Section 4.

Relative well groups. Since the pyramid involves relative homology groups, it seems
wise to extend the definition of well groups into the context of relative homology. While
this notion is new, it follows the above ideas closely so thatpresenting the definition in this
background section seems appropriate. Assume again that wehave a continuous mapping
f : X→ Y between topological spaces, as well as a subspaceP of C(X,Y) that containsf
and is equipped with a metric. Given a nested pairA

′ ⊆ A of subspaces ofY, and a radius
r ≥ 0, we note thatX′

r = Xr(fA′) is a subset ofXr = Xr(fA). For eachr-perturbationh
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of f , there is an inclusion of pairs(h−1(A), h−1(A′)) →֒ (Xr,X
′
r), which induces a map

jh : H(h−1(A), h−1(A′)) → H(Xr,X
′
r) between relative homology groups. Therelative

well groupU(A,A′)(r) is defined to be the intersection of the images of these maps, taken
over allr-perturbations off :

U(A,A′)(r) =
⋂

‖h−f‖
P
≤r

im jh.

When a distinction is needed, we will refer to the previous notion of well groups asabsolute
well groups.

3 Combinatorics of Homology
In this section, we present the first half of our point calculus, showing how to read the
homology of a level or interlevel set from the extended persistence diagram. The crucial
technical concept is that of a basis of the pyramid of zigzag modules, which we establish
by strengthening the Pyramid Theorem in [6].

Flipping a basis. We construct a basis for the pyramid one step at a time, by flipping the
basis of one zigzag module to the next. For this purpose, we consider two zigzag modules
that differ at one position, and we assume that there is a Mayer-Vietoris diamond serving
as a connecting bridge between the two modules at that position. Drawing the diamond
with the intersection at the bottom and the union at the top, as in (5), we say the diamond
connects thelower module with theuppermodule. Given a basis of the lower module, we
can show that we can construct a basis of the upper module so that the two bases agree on
the overlap. We refer to this operation asflipping the first basis to the second.

Lemma 1. Given two zigzag modules that differ by a single Mayer-Vietoris diamond, we
can flip any basis of the lower module to a basis of the upper module.

Proof. We give a proof by construction. Writing{eik} for the basis of the lower zigzag
module, we describe a basis{vik} of the upper zigzag module that differs from the lower
one only at the positionj at which the modules differ; as in (5). We thus at once setvik = eik
for all k 6= j, and the main task is then the construction of thevij . Put briefly, our rule will
be thatvij 6= 0 iff an odd number ofeij−1, eij , e

i
j+1 are non-zero. We give more specifics

via a case analysis. The cases are labeled pictorially, withblack dots denoting non-zero
classes, showing only the positionsj − 1, j, j + 1.

CASE 1 ( → ): We haveeij−1 6= 0 andeij = eij+1 = 0, and definevij as well as the
advancing map using the Mayer-Vietoris diamond, namelyvij = aj−1(e

i
j−1), which

is non-zero by exactness and becauseeij = 0.

CASE 2 ( → ): Again we setvij = aj−1(e
i
j−1), which is zero by exactness and

becauseeij 6= 0.

10



CASE 3 ( → ): We setvij = aj−1(e
i
j−1) = bj(e

i
j+1), which in this case is non-zero.

Indeed, if it were zero, then, by exactness, the pair(eij−1, 0) would be in the image
of the mapbj−1⊕aj . By the direct-sum decomposition of the maps in the basis, this
would imply thataj(ej) = 0, a contradiction.

CASE 4 ( → ): We haveeij 6= 0 andeij−1 = eij+1 = 0. If there areℓ ≥ 0 indicesi of
this kind, then the orthogonal complement to the image of themapcj , defined below,
has rankℓ, as we prove shortly. We pickℓ classesvij that span this complement. Since
vij maps toeij via the connecting homomorphism of the Mayer-Vietoris sequence, the
homological dimension ofvij is one higher than that ofeij .

CASE 5 ( → ): This is symmetric to Case 2, and we setvij = bj(e
i
j+1) = 0.

CASE 6 ( → ): This is symmetric to Case 1, and we setvij = bj(e
i
j+1) 6= 0.

Note first that we now have interval modules{eij} in the lower zigzag module, and interval
modules{vij} in the upper zigzag module. To show that the latter are indeedsummands,
we only need to verify that the non-zero classesvij form a basis ofH(V,V′), the new group
in the upper zigzag module. Using the notation in (5), we letE denote the vector space
spanned by the pairs(eij−1, e

i
j+1), noting thatE is a subspace ofH(C,C′)⊕H(D,D′), but

because of Case 3 it is not necessarily the entire direct sum.We consider the subspacesEN

of E spanned by the pairs(eij−1, e
i
j+1) in each CaseN , for 1 ≤ N ≤ 6. These subspaces

are independent and span the entire spaceE. In other words, zero is the only element
common to any two of the subspaces, and the ranks of the subspaces add up to the rank of
E.

The case analysis suggests a mapcj : E → H(V,V′) with cj((e
i
j−1, e

i
j+1)) = vij , if

(eij−1, e
i
j+1) 6= (0, 0), and zero otherwise. SinceE4 = 0, this map is zero onE4, but it

is also zero onE2 andE5. Furthermore,cj is injective when restricted toE1, E3, andE6.
We proceed to show that the images of these latter three vector spaces undercj are inde-
pendent of one another. To derive a contradiction, we first suppose thatcj(E1) ∩ cj(E6)
contains a non-zero class. Then there must exist(α, 0) ∈ E1 and (0, β) ∈ E6 with
aj−1(α) = bj(β) 6= 0. Hence,(α, β) ∈ ker (aj−1 ⊕ bj), which, by exactness, tells us
that α ∈ im bj−1. But this contradicts the direct-sum decomposition of the map bj−1.
Next, suppose thatcj(E1) ∩ cj(E3) contains a non-zero class, which means there exists
(α, 0) ∈ E1 and (γ, β) ∈ E3 such thataj−1(α) = bj(β) 6= 0. As above, this implies
that (α, β) ∈ ker (aj−1 ⊕ bj), and we reach the same contradiction. Finally, a symmet-
ric argument givescj(E3) ∩ cj(E6) = 0. We conclude thatcj(E1), cj(E3), andcj(E6)
are independent subspaces ofH(V,V′). In Case 4, we picked a basis for the orthogonal
complement to their span; all together, we have a basis ofH(V,V′), as required.

Establishing a basis. The Pyramid Theorem in [6] establishes an explicit bijection be-
tween the interval modules that arise in the decomposition of any two zigzags within the
pyramid. We strengthen this result by establishing bases onall the zigzag modules in such
a way that the basis elements correspond to the intervals andrespect the same bijections.
We call this abasisof the pyramid. To construct it, we note that the paths in the pyramid
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are connected by Mayer-Vietoris diamonds. We can thereforeflip a basis of the level set
zigzag upwards through the entire pyramid via repeated application of Lemma 1.

Theorem 1. A basis of the level set zigzag module extends to a basis of theentire pyramid.

We now give an explicit description of how the interval modules of the various paths in
the pyramid relate to each other. A convenient reference in this description is the extended
filtration (2), which follows the upward slope through the middle of the pyramid. Its first
half is parameterized from−∞ to∞, and its second half from∞ back to−∞. Let nowx
andy be two points along the upward slope, withx to the left ofy. We distinguish between
the ordinary case (x < y, both in the first half), the relative case (y < x, both in the second
half), and the two extended cases (x < y andy < x, with x in the first half andy in the
second half). For each case, we sketch how the basis element of the interval corresponds to
basis elements of other homology groups in Figure 4. As a general pattern, the two points

extended relative

extendedordinary

x x

x

x

y

y

yy

+1

−1

+1

−1

−1

+1

Figure 4: The basis element that corresponds to the interval fromx to y along the upward slope maps
to all spaces between the paths of its two endpoints. The four squares show the pattern for the four
different types of intervals.

trace out two curves consisting of segments with slopes±45◦ that reflect before they hit
the vertical sides and end at the horizontal sides of the square. The reason for the slopes
are Cases 1, 2, 5, and 6 in the proof of the Lemma 1, and the reason for the reflection is the
local change in the zigzag structure caused by moving the terminal zero group up. The two
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curves cross at one point inside the square, and the locationof that point is characteristic
for the case (the triangular region on the left in the ordinary case, at the top and at the
bottom in the two extended cases, and on the right in the relative case). The crossing is
caused by Case 4, in which the correspondence between the basis elements is constructed
via the connecting homomorphism of the Mayer-Vietoris sequence and therefore comes
with a shift in homological dimension.

Turning the table. The regions in Figure 4 show all the spaces represented by points in
the pyramid to which the basis element corresponding to the interval[x, y] is relevant. We
are now interested in the inverse question: which basis elements are relevant to a given
space? More specifically: which intervals in the decomposition of the extended filtration
(2) map to the basis of the homology group of the space represented by a point with coor-
dinatesa andb? We answer this question by considering the following subregions of the
p-dimensional persistence diagram:

λp[a, b] = {(x, y) ∈ Op(f) | x < b < y} ⊔ {(x, y) ∈ Ep(f) | x < b, a < y},

̺p[a, b] = {(x, y) ∈ Ep(f) | b < x, y < a} ⊔ {(x, y) ∈ Rp(f) | y < a < x},

λp[a, b) = {(x, y) ∈ Ep(f) | a < y < b} ⊔ {(x, y) ∈ Rp(f) | a < y < b < x},

̺p[a, b) = {(x, y) ∈ Rp(f) | y < a < x < b},

λp(a, b] = {(x, y) ∈ Op(f) | x < a < y < b},

̺p(a, b] = {(x, y) ∈ Op(f) | a < x < b < y} ⊔ {(x, y) ∈ Ep(f) | a < x < b},

λp(a, b) = {(x, y) ∈ Op(f) | x < a < y} ⊔ {(x, y) ∈ Ep(f) | x < a, b < y},

̺p(a, b) = {(x, y) ∈ Ep(f) | a < x, y < b} ⊔ {(x, y) ∈ Rp(f) | y < b < x},

where we assume thata andb are both homological regular values. To display these mul-

Death
Birth

Birt
h

Dea
th

E(f )

O(f )

R(f )

Figure 5: The three overlaid subdiagrams in the standard extended persistence diagram are unfolded
by flipping pages: keepingO(f) fixed,E(f) flips up, followed byR(f) which flips up and then to
the right. Finally, we clip the ordinary and relative subdiagrams along the diagonal and rotate the
entire design by 45 degrees so it rests on its long side. The arrows of the diagram go from negative
to positive infinity.

tisets, we first introduce a new, and for our purposes more convenient, way of drawing the
extended persistence diagram. See Figure 5 for a guide. We glue the domains of the three
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sub-diagrams and draw the result as a right-angled triangle. In this triangle, the birth and
death axes go from−∞ up to+∞ and then continue on back to−∞. In other words,
we flip the extended subdiagram upside down and glue its (formerly) upper side to the
upper side of the ordinary subdiagram. Similarly, we rotatethe relative subdiagram by
180 degrees and glue its (formerly) right side to the right side of the (flipped) extended
subdiagram. After gluing the three domains, we rotate the design by−45 degrees so the
triangle rests on its longest side, consisting of the diagonals in the ordinary and relative
subdiagrams. The diagonal of the extended subdiagram is nowthe vertical symmetry axis
passing through the middle of the triangle. These changes having been made, the multisets

Dea
th

Death
Birth

Birt
h

−1

−1

Death

Dea
th

Birth

Birt
h

+1

+1

Death

Dea
th

Birth

Birt
h

−1

Dea
th

Death
Birth

Birt
h

+1

H(f−1[a, b])

a

b

a

H(f−1(a, b))

b

H(f−1[a, b))

b

a

a

H(f−1(a, b])

b

Figure 6: The triangle design of the persistence diagram showing the regionsλ and̺ for the four
types of intervals in darker shading. When we collect the points to compute the rank of thep-th
homology group, we shift the homological dimension of classes as shown.

referenced above are displayed in Figure 6.

Remark 2. There is a straightforward translation of this triangular design to the repre-
sentation of persistence advocated in [4]. Namely, draw a isosceles right-angled triangle
downward from each point in the multiset and call the horizontal lower edge the corre-
spondingbar. The barcodeis the multiset of bars, one for each point in the diagram.
Similarly, we can translate the triangular design into the square design of the pyramid by
cutting along the vertical axis, turning the right triangleupside-down, and gluing the two
triangles along their hypotenuses.

Reading interlevel sets. The purpose of the multisets defined above is to offer a conve-
nient way to read the absolute or relative homology of an interlevel set from the extended
persistence diagram. We need some definitions to combine allfour types into one. First,
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we letB be the collection of interval modules in the decomposition of the extended fil-
tration (2). As mentioned earlier, this collection is in bijective correspondence with the
points inD(f). We writeV = 〈B〉 for the abstract vector space spanned byB, and we let
V = {〈B′〉 | B′ ⊆ B} be the collection of vector spaces spanned by subsets of thisbasis.
Second, we write

Wp(I) =















λp[a, b] ⊔ ̺p+1[a, b] if I = [a, b],
λp[a, b) ⊔ ̺p+1[a, b) if I = [a, b),
λp−1(a, b] ⊔ ̺p(a, b] if I = (a, b],
λp−1(a, b) ⊔ ̺p(a, b) if I = (a, b),

for the region of points in the persistence diagram that correspond to the basis elements of
Hp(f

−1(I)), and call it apair of wings. With these concepts, we have the following result,
which implies that the rank ofHp(f

−1(I)) is the number of points inWp(I):

Theorem 2. For each dimensionp and each intervalI whose endpoints are homological
regular values, there exists an isomorphism that takesHp(f

−1(I)) to the vector space
Gp(I) ∈ V spanned by the basis vectors corresponding to the points inWp(I).

Proof. Write B = {ei} and let{vi} be the basis of the groupHp(f
−1(I)), whereI is an

interval with endpointsa ≤ b that can be closed, closed-open, open-closed, or open. The
claimed isomorphism is then the linear mapγ : Hp(f

−1(I))→ V defined byγ(vi) = {ei}
for all non-zerovi.

To understand why the image ofγ consists of the intervals that correspond to the points
in Wp(I), we need to recall the transformation rules sketched in Figure 4. Consider for
example the closed interval case,I = [a, b], for whichWp(I) = λp[a, b]⊔̺p+1[a, b]. Since
the interval is closed, the homology group is represented bythe point(a, b) in the lower
triangular region. To lie in the dark shaded region, this point must satisfy the constraint
x < b < y in the ordinary case,x < b anda < y in the first extended case, andx < b
anda < y without dimension shift in the second extended case. These inequalities define
λp[a, b]. Furthermore, we getb < x andy < a with dimension shift in the second extended
case, andy < a < x, again with dimension shift, in the relative case. These inequalities
define̺p+1[a, b], which completes the proof in the closed case. For a proof of the closed-
open, open-closed, and open cases, note that the points representingHp(f

−1(I)) are found
in the right, left, and top triangular region of the pyramid,and then argue in a similar
fashion.

4 Combinatorics of Robustness
The definition of well group given in Section 2 involves an uncountable number of pertur-
bations, which give rise to the intersection of a potentially large number of subgroups, and
as such does not seem amenable to computation. In this section, we show that the situation
in the real-valued case is simpler, and that we are able to read the absolute and relative well
groups directly from the extended persistence diagram. We begin with a consequence of
the Mayer-Vietoris sequence, which provides the main technical ingredient of our proofs.
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A corollary of Mayer-Vietoris. For convenience, we establish the following notational
convention, wherein we reuse the same letter in different fonts. We will need it for abso-
lute and for relative homology groups. To avoid repetition,we state it now for the more
general relative case. LettingU′ ⊆ U andV

′ ⊆ V be pairs of topological spaces, we
write (U,U′) →֒ (V,V′) if U ⊆ V andU′ ⊆ V

′. This inclusion of pairs induces a map
u : H(U,U′) → H(V,V′) on homology groups, and we writeU = im u for the image of
this map. Note thatU is always a subgroup ofH(V,V′), namely the subgroup of homology
classes that have a chain representative carried by(U,U′). Note also that the rank ofU can
never exceed the rank ofH(V,V′). Suppose that, furthermore,(T,T′) →֒ (U,U′). Then,
from the sequence of mapsH(T,T′) → H(U,U′) → H(V,V′), we see thatT, the image
of H(T,T′) in H(V,V′), must be a subgroup ofU. The following lemma is a direct con-
sequence of the exactness of the Mayer-Vietoris sequence. However, we will use it often
enough that it seems reasonable to state and prove it formally.

Lemma 2. Suppose the pair of topological spacesV
′ ⊆ V can be decomposed asV =

C ∪ D andV′ = C
′ ∪ D

′, whereC′ ⊆ C andD′ ⊆ D. Set(E,E′) = (C ∩ D,C′ ∩ D
′). If

a classα ∈ H(V,V′) belongs toC and toD, thenα also belongs toE.

Proof. Following our convention, we use the notationc : H(C,C′) → H(V,V′) for the
map on homology induced by the inclusion of(C,C′) in (V,V′). Similarly, we writed :
H(D,D′)→ H(V,V′) ande : H(E,E′)→ H(V,V′), as well asec : H(E,E′)→ H(C,C′)
anded : H(E,E′) → H(D,D′). Note thatC = im c, D = im d, andE = im e. Consider
now the relevant portion of the Mayer-Vietoris sequence for(V,V′):

H(E,E′) H(C,C′)⊕ H(D,D′) H(V,V′).//
(ec,ed)

//
c−d

By assumption,α ∈ C, so there exists someαc ∈ H(C,C′) such thatc(αc) = α. Similarly,
there exists anαd ∈ H(D,D′) such thatd(αd) = α. This implies that the pair(αc, αd)
belongs to the kernel ofc − d, and thus also, by exactness of the sequence, belongs to the
image of(ec, ed). Hence, there existsαe ∈ H(E,E′) with ec(αe) = αc anded(αe) = αd.
In particular, sincee = c ◦ ec, we havee(αe) = α, and thereforeα ∈ E as claimed.

In the typical application of Lemma 2, we will construct further pairs(T,T′) →֒
(C,C′) and(B,B′) →֒ (D,D′) such thatα ∈ T ∩ B. From the remark above, we know
thatT ⊆ C andB ⊆ D. The lemma then applies and we can conclude thatα ∈ E, as
before.

The well group of a level set. As a warm-up exercise, we first consider the case in which
A is a single point. More specifically, we suppose that we have acompact topological space
X and a functionf : X → R, and we find the well groupsU(r) = UA(r), whereA = {a}
is some point on the real line. In this case,Xr(fA) = f−1

A
[0, r] = f−1[a − r, a + r]. To

state the formula, we distinguish two particular subspacesof Xr = Xr(fA), namely the
top level set, Tr = f−1(a + r), and thebottom level set, Br = f−1(a − r). Using the
convention from before, we writeTr andBr for the images ofH(Tr) andH(Br) in H(Xr).

Theorem 3. U(r) = Tr ∩ Br, for everyr ≥ 0.
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Proof. We prove equality by establishing the two inclusions in turn. To showU(r) ⊆
Tr ∩ Br, consider an arbitrary classα ∈ U(r). We definehtop = f − r andhbot = f + r
and note that they arer-perturbations off , with h−1

top(a) = Tr andh−1
bot(a) = Br. By

definition of the well group,α is supported by everyr-perturbation off , and therefore by
htop and byhbot. It follows thatα ∈ Tr ∩ Br. To showTr ∩ Br ⊆ U(r), we consider an
arbitrary classα ∈ Tr ∩ Br and leth be an arbitraryr-perturbation off . To finish the proof,
we need to show thatα is supported byh. We defineCr = h−1[a,∞) ∩ Xr andDr =
h−1(−∞, a] ∩ Xr. Note thatCr ∪ Dr = Xr while Cr ∩ Dr = h−1(a). Furthermore,
the inequality‖h− f‖∞ ≤ r implies thatTr ⊆ Cr andBr ⊆ Dr. By Lemma 2,α is
supported byh−1(a), as required.

Remark 3. Theorem 3 implies that the well group for a Morse functionf can change
only at critical values of the functionfA, whereA = {a}. In other words, terminal critical
values are, in this simple context, just ordinary critical values. Indeed, if[r, s] is an interval
that contains no critical values offA, then there is a deformation retractionXs(fA) →
Xr(fA) providing an isomorphismH(Xs(fA))→ H(Xr(fA)). Furthermore, this retraction
mapsTs ontoTr, in such a way that that the images ofH(Tr) andH(Ts) in H(Xs(fA)) are
identical. Similarly, the images ofH(Br) andH(Bs) in H(Xs(fA)) are identical. Hence
the well groupsU(r) andU(s) are isomorphic.

The well group of an interlevel set. We generalize from a point to an interval, which
can be closed, closed-open, open-closed, or open. To that end, we define the spaces and
maps so that the formula for the well group is the same in all four cases, and indeed the
same as in Theorem 3 above. Assumea < b, setA = [a, b], and letA′ ⊆ {a, b}. We
thus getXr = Xr(fA) = f−1[a − r, b + r] andX′

r = Xr(fA′), which is the empty set,
f−1[b−r, b+r], f−1[a−r, a+r], or the union of these two interlevel sets. Correspondingly,
we define thetopandbottom interlevel sets:

Tr = f−1[a+ r, b+ r], T
′
r ⊆ {f−1(a+ r), f−1(b+ r)},

Br = f−1[a− r, b− r], B
′
r ⊆ {f−1(a− r), f−1(b− r)};

see Figure 7. The pairs(Tr,T
′
r) and(Br,B

′
r) include into(Xr,X

′
r) in all four cases. Still

using the notational convention from above, we writeTr andBr for the images ofH(Tr,T
′
r)

andH(Br,B
′
r) in H(Xr,X

′
r). The formula for the well group,U(r) = U(A,A′)(r), is then,

unsurprisingly:

Theorem 4. U(r) = Tr ∩ Br, for everyr ≥ 0.

Proof. We give the argument for the most complicated of the four cases, whenA′ = {a, b}.
The proofs of the other three cases are simpler versions of the same argument. We may
assumea+ r < b− r, elseXr = X

′
r, which implies that all groups in the claimed formula

are zero and so we are done. To prove the inclusionU(r) ⊆ Tr ∩ Br, we consider the two
r-perturbationshtop = f − r andhbot = f + r, as before. Note that(Tr,T

′
r) = h−1

top(a, b)

and(Br,B
′
r) = h−1

bot(a, b), and the desired inclusion follows from the definition of relative
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Figure 7: Each vertical strip representsX, and the shaded portions mark(Cr,C
′
r) and(Tr,T

′
r) on

the left,(Xr,X
′
r) in the middle, and(Br,B

′
r) and(Dr,D

′
r) on the right.

well groups. To proveTr ∩ Br ⊆ U(r), we choose an arbitrary classα ∈ Tr ∩ Br and an
r-perturbationh of f . Furthermore, we introduce the following pairs of subspaces:

Cr = h−1[a,∞) ∩ f−1(−∞, b+ r],

C
′
r = (h−1[a,∞) ∩ f−1(−∞, a+ r]) ∪ (h−1[b,∞) ∩ f−1(−∞, b+ r]),

Dr = h−1(−∞, b] ∩ f−1[a− r,∞),

D
′
r = (h−1(−∞, a] ∩ f−1[a− r,∞)) ∪ (h−1(−∞, b] ∩ f−1[b− r,∞));

see Figure 7 for a depiction of the open case. Sinceh is an r-perturbation, we have
(Tr,T

′
r) →֒ (Cr,C

′
r) and similarly(Br,B

′
r) →֒ (Dr,D

′
r). This impliesTr ⊆ Cr and

Br ⊆ Dr, and thereforeα ∈ Cr ∩ Dr. It is easy to see that(Cr ∪ Dr,C
′
r ∪ D

′
r) =

(Xr,X
′
r), and also that(Cr ∩ Dr,C

′
r ∩ D

′
r) = (h−1(A), h−1(A′)). Lemma 2 thus implies

α ∈ (h−1(A), h−1(A′)). Since this is true for allr-perturbationsh, we haveα ∈ U(r), as
required.

Including intervals. We again need some definitions to unify the four cases into one.
Given two intervalsI andJ of the same type, we sayI includesinto J , denoted asI →֒ J ,
if f−1(I) includes as a pair inf−1(J). Unfolding the definition of the four types and
assuminga ≤ b ≤ c ≤ d, we have[b, c] →֒ [a, d], [b, d) →֒ [a, c), (a, c] →֒ (b, d], and
(a, d) →֒ (b, c); compare this with the Mayer-Vietoris diamonds in Figure 2.Suppose
now that we have intervalsI →֒ J , both of the same type. By Theorem 2, there are
isomorphisms that takeHp(f

−1(I)) andHp(f
−1(J)) to groupsGp(I) andGp(J) in V.

The inclusion induces a map on homology, which composes withthese isomorphisms to
giveg : Gp(I)→ Gp(J). On the other hand, since the two groups are members ofV, there
is also a natural map fromGp(I) to Gp(J), namely the one that restricts to the identity on
the span of their shared vectors and is zero otherwise. Not surprisingly, g is exactly that
map. We formalize this claim and give a proof.
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Theorem 5. Let I →֒ J and letGp(I), Gp(J) be the correspondingp-dimensional groups
in V. Then the image ofg : Gp(I) → Gp(J) is a vector space inV, and its basis is in
bijection with the multisetWp(I) ∩ Wp(J).

Proof. To restate the theorem, we consider the diagram defined by thehomology groups of
the preimages of the including intervals,I →֒ J , and the corresponding vector spaces inV:

Hp(f
−1(I))

h
−→ Hp(f

−1(J))
↑ ↓

Gp(I)
g
−→ Gp(J).

The vertical maps are isomorphisms given by Theorem 2. The map h is induced by inclu-
sion, andg maps a basis vector ofGp(I) to the same basis vector ofGp(J), if it exists,
and to zero, otherwise. Hence, the basis ofim g consists of the vectors that are common to
the bases ofGp(I) andGp(J). This theorem states that we can getg by composingh with
the two isomorphisms. Equivalently, the diagram commutes.To prove commutativity, we
consider again the zigzag modules drawn as monotonic paths in the square; see Figure 2.
SinceI →֒ J , we can find two non-crossing modules, one containingHp(f

−1(I)) and the
other containingHp(f

−1(J)). To get a basis forim h, we translate intervals from one path
to the other, keeping only the ones that cover bothHp(f

−1(I)) andHp(f
−1(J)). Further

translating these intervals to the hypotenuse gives the corresponding points in the persis-
tence diagram. These points are precisely the ones shared byWp(I) andWp(J). In other
words,im g in V is isomorphic toim h, as desired.

Reading robustness. Theorem 5 allows us to compute the well groups and the well dia-
gram associated to a single interval,I = (A,A′). The homology off−1(I) can be read off
the persistence diagram off , as stated in Theorem 2. Similarly, the homology of(Xr,X

′
r),

whereXr = Xr(fA) andX′
r = Xr(f

′
A
), can be read off the same diagram, as we now

explain. By Theorem 4, the well group forr is the intersection of the images of the maps
tr : Hp(Tr,T

′
r) → Hp(Xr,X

′
r) andbr : Hp(Br,B

′
r) → Hp(Xr,X

′
r) induced by the in-

clusions. By Theorem 5, this intersection corresponds to a pair of rectangles within the
region off−1(I); see the intersection betweenWp(I) and the dotted rectangles in Fig-
ure 8. In the closed case, this intersection gradually recedes to infinity, while in the two
half-open cases, the intersection disappears whenr reaches half the length of the interval.
Correspondingly, the well group shrinks gradually in the closed case, while it vanishes at
or beforer = (b − a)/2 in the half-open cases. Similarly, the well group vanishes when
r reaches(b − a)/2 in the open case. However, here it vanishes abruptly. More precisely,
the range of the mapstr andbr, which isHp(f

−1(a+ r, b− r)), approaches the homology
group of the suspension of the level set at(a+ b)/2, whenr goes toward(b− a)/2, before
it suddenly becomes zero whenr reaches that limit.

In all four cases, a point contributes to the well group untilr reaches a value at which
the shrinking intersection no longer contains the point. Finding this value ofr is easy since
both rectangles shrink uniformly along all of their sides. Consider for example the case
I = [a, b] illustrated by the upper left design in Figure 8. For a point(x, y) ∈ D(f), the
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Figure 8: Reading the robust homology in the four different cases. The shaded region gives the basis
of Hp(f

−1(I)), while the dark shaded region gives the basis of the well subgroup,Up(r).

value ofr at which the point drops out of the relevant region is

min{b− x, y − b} if (x, y) ∈ O(f) ∩ λ[a, b],

min{b− x, y − a} if (x, y) ∈ E(f) ∩ λ[a, b],

min{x− b, a− y} if (x, y) ∈ E(f) ∩ ̺[a, b],

min{x− a, a− y} if (x, y) ∈ R(f) ∩ ̺[a, b].

The well diagram is the multiset of the values we get from the points in the persistence
diagram.

Measuring the difference. We can interpret the rank of the well group as a measure of
the similarity between the image of the maptr : (Tr,T

′
r) → (Xr,X

′
r) and the image of

the mapbr : (Br,B
′
r) → (Xr,X

′
r). Alternatively, we could use the cokernels of these

two maps to measure their difference. Indeed, it is not difficult to prove counterparts of
Theorem 5 for cokernels as well as for kernels.

Theorem 6. Let I →֒ J and letGp(I), Gp(J) be the correspondingp-dimensional groups
in V. Then the kernel and cokernel ofg : Gp(I)→ Gp(J) are vector spaces inV, the basis
of ker g is in bijection withWp(I) − Wp(J), and the basis ofcok g is in bijection with
Wp(J)−Wp(I).

To measure the difference, we would therefore take the (algebraic) sum of the two
cokernels. Consider for example the open case. By the above lemma, we get a basis of
cok tr andcok br by settingJ = (a+ r, b− r) and first settingI to I1 = (a+ r, b+ r) and

20



second toI2 = (a − r, b − r). The basis of the sum,cok tr + cok br, is in bijection with
the union of the two multisets of points, which isWp(J)−Wp(I1)−Wp(I2).

5 Discussion
The main contribution of this paper is the introduction of the point calculus for homol-
ogy computations of level and interlevel sets. This comprises interlevel sets defined by
closed, half-open, and open intervals, images, kernels, and cokernels of maps induced by
inclusions, and the robustness of homology as defined by wellgroups. The point calculus
provides a compact interface to a wealth of homological information that can be useful to
researchers with and without background in algebraic topology. For the expert, it provides
a compact summary of information that may be used to formulate conjectures about the
topology of spaces and of functions. For the non-expert, theinterface offers an intuitive ap-
proach to understand the topology of datasets that by-passes the introduction of algebraic
topology foundations. It is directly applicable to data in the form of continuous functions,
which is common in medical imaging and in scientific visualization.

We conclude by formulating an open question aimed at castinglight on two- and higher-
dimensional notions of robustness. This paper provides a solution to computing robustness
whenY = R and perturbations are measured using theL∞-metric, and [3] shows that our
results also hold for a broader class of metric function spaces. In [9], the authors give an
algorithm whenX is an orientable2-manifold,Y = R

2, andA is a point. Algorithms for
other cases are not yet known.
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