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Abstract

The spiking activity of principal cells in mammalian hippocampus encodes an internalized

neuronal representation of the ambient space—a cognitive map. Once learned, such a map

enables the animal to navigate a given environment for a long period. However, the neuronal

substrate that produces this map is transient: the synaptic connections in the hippocampus

and in the downstream neuronal networks never cease to form and to deteriorate at a rapid

rate. How can the brain maintain a robust, reliable representation of space using a network

that constantly changes its architecture? We address this question using a computational

framework that allows evaluating the effect produced by the decaying connections between

simulated hippocampal neurons on the properties of the cognitive map. Using novel Alge-

braic Topology techniques, we demonstrate that emergence of stable cognitive maps pro-

duced by networks with transient architectures is a generic phenomenon. The model also

points out that deterioration of the cognitive map caused by weakening or lost connections

between neurons may be compensated by simulating the neuronal activity. Lastly, the

model explicates the importance of the complementary learning systems for processing

spatial information at different levels of spatiotemporal granularity.

Author summary

The reliability of our memories is nothing short of remarkable. Synaptic connections

between neurons appear and disappear at a rapid rate, and the resulting networks con-

stantly change their architecture due to various forms of neural plasticity. How can the

brain develop a reliable representation of the world, learn and retain memories despite, or

perhaps due to, such complex dynamics? Below we address these questions by modeling

mechanisms of spatial learning in the hippocampal network, using novel algebraic topol-

ogy methods. We demonstrate that although the functional units of the hippocampal net-

work—the place cell assemblies—are unstable structures that may appear and disappear,

the spatial memory map produced by a sufficiently large population of such assemblies

robustly captures the topological structure of the environment.
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Introduction

Functioning of the biological networks relies on synaptic and structural plasticity processes

taking place at various spatiotemporal timescales [1–4]. For example, the so-called place cells

in mammalian hippocampus learn to spike within specific locations of a new environment

(their respective place fields) in a matter of minutes and then exhibit slow tuning of their firing

rates for weeks [5–7]. The functional architecture of the hippocampal network constantly

changes due to formation, adaptation and pruning of the synaptic connections via fast and

slow plasticity mechanisms [8]. Its key components—the dynamical cell assemblies [9, 10]—

may emerge from place cell coactivities and disappear due to reduction or cessation of spiking

at working and intermediate memory timescales, between minutes [11, 12] and hundreds of

milliseconds [13, 14]. In contrast, spatial memories in rats can last much longer [15, 16], which

poses a principal question: how can a rapidly rewiring network produce and sustain a stable

cognitive map? In the following, we address this question by modeling a population of dynam-

ical place cell assemblies and study the effect produced by the network’s transience on the

large-scale representation of space, using algebraic topology tools. In particular, we demon-

strate that despite rapid changes in its synaptic architecture, a transient cell assembly network

can encode a stable large-scale topological map within a biologically plausible period.

The paper is organized as follows. We start with a general outline of the key ideas behind

the topological approach and describe a schematic model of a transient cell assembly network.

We then study the statistics of its connections’ turnover, the resulting dynamics of the network

as a whole and of the spatial map encoded by this network (Fig 1). The results are tested for

several connection decay rates, in different setups and summarized in the Discussion. The

required mathematical and computational details are provided in the Methods section.

The topological model

General outline. Our approach is based on recent experimental results [17–19], which sug-

gest that the hippocampal spatial map derived from place cell co-firing emphasizes contiguities

between locations and the temporal sequence in which they are experienced. In other words,

this map is topological in nature, i.e., akin to a subway map, as opposed to a topographical city

Fig 1. Study outline. 1. Dynamics of transient connections. 2. Dynamics of the transient network represented by a

“flickering” simplicial complex. 3. Dependence of the network’s dynamics on the transience rate, τk, studied in several

setups, including “quenched and random complexes. 4. Dependence of the results on the parameters of place cell

activity—the mean ensemble firing rate fc, and the number of active cells, Nc.

https://doi.org/10.1371/journal.pcbi.1006433.g001
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map—a property that is also manifested at the cognitive level [20–24]. From the computational

perspective, this observation suggests that topological instruments can be used to study the

emergence of the hippocampal maps from the place cells’ spiking inputs.

Our model of the hippocampal network is based on a schematic representation of the

information supplied by a population of spiking place cells [25–29]. First, a group of coactive

place cells, c0, c1, . . ., cn is represented by an abstract simplex σ = [c0, c1, . . ., cn]—a basic

object from algebraic topology that may be viewed geometrically as a n-dimensional tetrahe-

dron with n + 1 vertexes (see Methods). Due to spatial tuning of the place cell activity, each

individual coactivity simplex may also be viewed as a representation of the spatial overlap

between the corresponding place fields. Together, the full collection of such simplexes forms

a simplicial “coactivity” complex T that represents spatial connectivity among the place

fields that cover a given environment E, i.e., the structure of the place field map ME (see

Methods).

This process of accumulation of the topological information can be represented by the

dynamics of the coactivity complex. At the beginning of navigation, the complex T ðMEÞ con-

tains a few simplexes that correspond to the few coactive place cell combinations that had time

to appear. At this stage, the coactivity complex T is typically split into several disconnected

pieces (subcomplexes), riddled with holes. Physiologically, these pieces may be viewed as frag-

ments of the emerging cognitive map (Fig 2A). If the parameters of spiking activity fall within

the biological range of values, then, as more instances of coactivity are produced, the coactivity

complex T ðMEÞ grows and eventually assumes a shape that is topologically equivalent to the

shape of the navigated environment.

Fig 2. Topological structure of the perennial and decaying coactivity complexes. A: Simulated place field map ME of a small planar environment E with a square

hole in the middle (see Methods). Four consecutive snapshots illustrate the temporal dynamics of the coactivity complex: at the early stages of navigation the complex

is small and fragmented, but as the topological information accumulates, the transient topological loops disappear, yielding a stable topological shape that is equivalent

to the shape of the underlying environment. B: The timelines of topological loops in a steadily growing simplicial complex computed using persistent homology

methods: the timelines of disconnected pieces (0D loops) are shown by light-blue lines and the timelines of one-dimensional holes (1D loops) are light-green. Most

loops are spurious, i.e., correspond to accidental, short-lasting structures in T ðMEÞ. The persistent topological loops (marked by red dots) represent physical features of

the environment E, i.e., its main connected component and the central hole. The time Tmin required to eliminate the spurious loops can serve as a theoretical estimate

of the minimal time needed to learn path connectivity of the environment. C: If the simplexes may not only appear but also disappear, then the structure of the

resulting “flickering” coactivity complex F ðMEÞmay never saturate. D: The timelines of the topological loops in such complex may remain interrupted by opening and

closing topological gaps produced by decays and reinstatements of its simplexes.

https://doi.org/10.1371/journal.pcbi.1006433.g002
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The topological structure of a steadily growing coactivity complex can be described using

persistent homology theory methods [30, 31]. In particular, this theory allows detecting topo-

logical loops in T ðMEÞ—closed chains of simplexes identified up to topological equivalence

[32]—on a moment-by-moment basis (Fig 2B). Such loops provide a convenient semantics for

describing how T ðMEÞ unfolds in time. For example, the number of inequivalent topological

loops that can be contracted to a zero-dimensional vertex defines the number of the connected

components in T ðMEÞ; the number of loops that contract to a one-dimensional chain of links

defines the number of holes and so forth. In mathematical literature, the number of k-dimen-

sional topological loops in a space X is referred to as its k-th Betti number, bk(X), and the list

of all Betti numbers defines the topological barcode, bðXÞ ¼ ðb0ðXÞ; b1ðXÞ; . . .Þ of X [33].

For example, the simply connected, square environment E with a single hole in the middle

(Fig 2A and Methods) has the Betti numbers b0ðEÞ ¼ b1ðEÞ ¼ 1, with no higher order loops,

bk>1ðEÞ ¼ 0; hence its topological barcode is bðEÞ ¼ ð1; 1; 0; 0; . . .Þ. The time Tmin required

by the coactivity complex to produce the topological barcode of the underlying environment,

bðT Þ ¼ bðEÞ, can serve as a theoretical estimate for the “learning” period needed to accumu-

late spiking data for establishing the large-scale spatial structure of the environment [25–29].

The construction of the coactivity complexes may be adopted to reflect physiological

aspects of the hippocampal network. For example, the simplexes of the coactivity complex

may represent not just arbitrary combinations of coactive cells, but the neuronal assemblies—

groups of cells that jointly elicit spiking activity in the downstream neurons. As mentioned in

the Introduction, these assemblies are unstable, transient structures that are recycled, accord-

ing to different estimates, at the timescale between minutes to hundreds of milliseconds [9,

10].

In order to represent this transience, the simplexes of the coactivity complex are allowed to

appear and to disappear, i.e., “flicker,” following the appearances and disappearances of the

corresponding cell assemblies. As a result, certain parts of the resulting “flickering” coactivity

complex FðMEÞ complex may produce holes, fractures or fragment into pieces that can inflate

or shrink, at different rates and in various sequences (Fig 2C). The topology of such a complex

cannot, in general, be described using ordinary persistent homology theory methods (Fig 2D),

and requires a different mathematical apparatus—Zigzag persistent homology theory, outlined

in the Methods section and in [34–36].

Implementation. An efficient implementation of the coactivity complex is based on a

classical “cognitive graph” model of the hippocampal network [37–40]. In this model, each

active place cell ci corresponds to a vertex vi of a graph G, and the connections between pairs of

cells (physiological or functional) are represented by the links Bij = [vi, vj] of G. The assemblies

of place cells c1, c2, . . ., cn (“synaptically interconnected networks” in terminology of [10]) can

then be naturally interpreted as fully interconnected subgraphs between the corresponding

vertexes, i.e., as the maximal cliques B = [v1, v2, . . ., vn] of G [28, 29]. The connection with the

topological model described above comes from the observation that cliques, as combinatorial

objects, can be viewed as simplexes spanned by the same sets of vertexes. In other words, the

collection of cliques of any graph G defines the so-called clique complex S(G) [41], and hence

the set of the coactivity cliques of G produces a coactivity complex associated with the cognitive

graph. Such a complex effectively accumulates the information about place cell coactivity at

various timescales, capturing the correct topology of planar [25–28] and voluminous [29] envi-

ronments within minutes.

This construction provides a suitable ground for modeling a population of dynamical

cell assemblies. Specifically, one can use a coactivity graph with appearing and disappearing

(flickering) links to describe the appearing and disappearing connections in the hippocampal
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network. The topological shape of the corresponding flickering coactivity complex, will then

represent the net topological information encoded by this network. This constitutes a simple

phenomenological model that connects the information provided by individual dynamical

place cell assemblies and their physiological properties (e.g., the rate of their transience) to the

structure of the large-scale topological maps encoded by the cell assembly network as a whole.

We implemented this model using the following basic assumptions.

Decay of the connections. A simple description of a transient network can be given in terms

of the probabilities of the links’ appearances and disappearances at a given moment. For the

latter, we adopt a basic “decay” model, in which an existing link Bij between cells ci and cj can

disappear with the probability

pijðtÞ ¼
1

tij
e� t=tij ;

where the time t is counted from the moment of the link’s last appearance and the parameter

τij defines its mean decay time. The decay times of the higher order cliques in the coactivity

graph (i.e., of the higher order cell assemblies in the hippocampal network) are then defined

by the corresponding links’ half-lives.

In a physiological cell assembly network, the decay times τij are distributed around a certain

mean τ with a certain statistical variance [42]. However, in order to simplify the current model

and to facilitate the interpretation of its outcomes, we attribute a single value τij = τ to all links

in G and use a unified distribution

p0ðtÞ ¼
1

t
e� t=t; ð1Þ

to describe the deterioration of all the connections within all cell assemblies. Thus, τ will be the

only parameter that describes the decay of the functional connections in the model. We will

therefore use the notations Gt and F t to refer, respectively, to the flickering coactivity graph

with decaying connections and to the resulting flickering clique coactivity complex with decay-

ing simplexes.

Appearances and rejuvenations of the connections. A connection Bij in the graph G appears if

the cells ci and cj become active within a w = 1/4 second period (biologically, this corresponds

to two consecutive periods of the θ-rhythm [26, 43]). The subsequent coactivities of the pair

[ci, cj] either reinstate the link Bij (if it has disappeared by that moment) or rejuvenates it (i.e.,

its decay restarts). As a result, the links’ actual or effective mean lifetime τe may differ from the

proper decay time τ that defines the expected lifetime of an unperturbed connection. Indeed, if

the connection Bij that appeared at a moment t1, does not disappear by the moment t2 when it

reactivates, then its net expected lifetime becomes t2 − t1 + τ. If it does not decay before being

“rejuvenated” again at a later moment t3, then its net expected lifetime is t3 − t1 + τ and so

forth. Notice however, that since place cells’ spiking in learned environments is stable [44],

the vertexes in the coactivity complex F t appear with the first activation of the corresponding

place cells and then never disappear.

Fixed geometric parameters. The series of instances at which a given combination of cells

may become active is defined by the geometry of the place field map ME and by the times of

the rat’s visits into the locations where the corresponding place fields overlap [45, 46]. In order

to study how the dynamics of the Betti numbers bkðF tðMEÞÞ depends on the links’ decay time

τ, we selected a specific trajectory γ(t) and used place field maps ME that induce coactivity

complexes with the correct topological shape in the “perennial” (τ =1) limit [25, 26]. In the
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following, we will omit references to these parameters in the notations of the coactivity graph

or the coactivity complex, and write simply Gt and F t.

Restricted dimensionality. Although the coactivity complex is multidimensional [28], for a

topological description of a planar environment it suffices to consider only the two-dimen-

sional skeleton of F t, i.e., the collection of second and third order connections (i.e., second or

third order cliques of Gt or two- or three-vertex simplexes of F t). Thus, in the following we

will compute the coactive pairs and triples of the simulated neurons in order to study the topo-

logical properties of F t as function of τ in the lowest two dimensions.

A priori, one would expect that if τ is too small, then the flickering complex F t deteriorates

too rapidly to produce a stable topological representation of the environment. In contrast, if τ
is too large, then the effect of the decaying connections will not be significant. Thus, our goal

will be to identify just how rapidly the coactivity simplexes can recycle while preserving the net

topological structure of F t. Physiologically, this will provide an estimate for how rapidly the

hippocampal cell assemblies can rewire without jeopardizing the integrity of the topological

map of the environment.

Results

To start the simulations, we reasoned that in order for the flickering complex F t to accumu-

late a sufficient number of simplexes and capture the topology of the environment, its sim-

plexes should not disappear between two consecutive coactivities of the corresponding cell

groups. In other words, the characteristic lifetime of the links of the coactivity graph should

exceed the typical interval between two consecutive activations of the corresponding cell

pairs. First, we simulated a map produced by N = 300 place cells with mean maximal firing

rate f = 14 Hz and mean place field size of 20 cm; a typical link B in the corresponding con-

nectivity graph G activates about hn2i = 50 times during the Ttot = 25 min navigation period,

i.e., the mean activation frequency is f2� 1/30 Hz (Fig 3). Hence, in order to make room for

the rejuvenation effects, we first tested the decay time of τ = 100 secs, which is about three

times longer than the inter-activity period and by an order of magnitude smaller than the

total navigation time τ� Ttot/15.

A histogram of the time intervals DtBi between the ith consecutive birth (bi) and death (di)
of a link B, DtBi ¼ tðdiÞ

B
� tðbiÞ

B
, shows that the distributions of the connections’ effective lifetimes

is bimodal (Fig 4A). The relatively short (Δt� 10τ) lifetimes are exponentially distributed,

implying that these connections are short-lived (the mode of the exponential distribution van-

ishes) and may be characterized by the effective decay times that are about twice higher for the

links, tð2Þe � t, than for the triple connections, tð3Þe � t (Fig 3). In addition, the bulging tails of

the distributions shown on Fig 4A and 4B represent an emergent population of long-lived

connections, i.e., a set of “survivor” simplexes that persist throughout the navigation period

(ΔtB� Ttot).

In other words, the net structure of the lifetimes’ statistics suggests that the coactivity com-

plex contains a stable “core” formed by a population of surviving simplexes, enveloped by a

population of rapidly recycling, “fluttering,” simplexes. The mean lifetime of each individual

link, averaged over all the appearances across the entire navigation period, DtB2
¼ htðdiÞ

B2
� tðbiÞ

B2
ii,

can be approximated by a lognormal distribution with the mode m2� 4 minutes (Fig 4C),

which corresponds to the mean lifetime of the “fluttering” connections (Fig 4A). Similarly, a

typical third-order simplex appears for about two minutes (Fig 4D), as suggested by the mean

of the distribution shown on Fig 4B. Thus, on average, both the coactivity graph Gt and the cor-

responding coactivity complex F t exhibit persistent structures, despite rapid flickering of the

individual connections.
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The rejuvenation of simplexes also affects the frequency of their (dis)appearances. As

shown on Fig 4E and 4F, a typical link and a typical third order connection disappear about 4

− 5 times during the navigation period, which is by an order of magnitude less than the links’

activation rate (Fig 4B). Thus, a typical simplex rejuvenates about 10 times before getting a

Fig 3. Time course of pairwise coactivity. A: Histogram of the number of times that a given connection B2 activates, computed for the place field map illustrated on

Fig 2 (for the corresponding occupancy map, see Methods). On average, a connection is activated about 50 times over the 25 min navigation period, i.e., once every 30

secs, although most links activate only a few times whereas some of them may appear hundreds of times. B: Timelines of the links of the coactivity graph G.

https://doi.org/10.1371/journal.pcbi.1006433.g003

Fig 4. Connection dynamics. A: The histogram of the time intervals between the consecutive births (bi) and deaths (di) of the links, DtB2 ;i
¼ tðdiÞ

B2
� tðbiÞ

B2
, i = 1, 2, . . .. The

mean of the exponential that fits the left side of the histogram (dark-blue line) is shown at the top of the panel. The pink arrow points at the population of the

“survivor” links. The red line marks the distribution (1). B: Similar histogram for the third order simplexes. The histograms of the lifetimes averaged over all the

instances of a given simplexes’ appearances DtB2
¼ htðdiÞ

B2
� tðbiÞ

B2
ii (panel C) and DtB3

¼ htðdiÞ
B3
� tðbiÞ

B3
ii (panel D). The modes of the resulting lognormal distributions (solid

lines), m2 and m3, correspond to the means shown on panels A and B. The histograms of the number of times the link and the triple connections activate during the

navigation period are shown on the panels E and F. The exponential fits are shown by solid lines, with the means shown at the top of the panels. The distributions of

total existence times for the second (panel G) and third (panel H) order simplexes, with the averages that are approximately equal to the product of the mean effective

lifetime and the mean number of appearances, ΔTe,B� ne,Bτe,B.

https://doi.org/10.1371/journal.pcbi.1006433.g004
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chance to decay. The histograms of the net lifetimes, i.e., of the total time that a given link or

a clique spends in existence (ΔTB = SiΔtB,i) shown on Fig 4G and 4H exhibit an even more

salient contribution of the survivor simplexes. Note that the average net lifetime is approxi-

mately equal to the product of the mean effective lifetime and the mean number of appear-

ances, ΔTe,B� ne,Bτe,B, as expected.

Dynamics of the flickering coactivity complexes

How does the decay of the connections affect the net structure of the flickering complex F t?

As shown on Fig 5A, the numbers of links N2(t) and of the triple connections N3(t) rapidly

grow at the onset of the navigation and begin to saturate in about ts� 4 minutes (i.e., by the

time when a typical link had time to make an appearance), reaching their respective asymp-

totic values in ta� 7 minutes. To put the size of the resulting flickering complex into a perspec-

tive, note that the number of simplexes in a decaying complex F t<1 can never exceed the

number of simplexes that would have existed in absence of decay, i.e., in the “perennial”

coactivity complex, F1 � T . Thus, the size of the complex at a moment t, F tðtÞ, can be char-

acterized by the proportion of simplexes that happened to be actualized at that moment. As

illustrated on Fig 5A, these numbers fluctuate around 60% for the second order simplexes

Fig 5. Dynamics of the flickering complex and of its topology. A: The number of links N2(t) in the flickering complex F 100ðtÞ (blue trace) compared to the number

of links in the perennial complex F1ðtÞ (dashed light-blue trace). The corresponding numbers of triple connections N3(t) are shown by the green and the dashed light-

green traces, respectively. B: The matrix of asymmetric distances dð2Þij and dð3Þij (note the difference in scales shown by the color bars), computed over a five minutes time

interval. The changes in the coactivity complex accumulate at the τe timescale. C: The proportions of second and third order connections shared by the coactivity

complexes at the consecutive moments, computed for links (top light-green line) and for the triple connections (top light-blue line) closely follow the 100% mark,

which implies that F tðtÞ deforms slowly. The numbers of connections present at a moment of time when the coactivity complex is inflated (t� � 9 min) that are also

present at another moment t, NkðF tðt�Þ \ F tðtÞÞ, fluctuate around� 80% for links (blue trace) and� 60% for triple connections (green trace), implying that the same

set of connections is being reactivated. D: Timelines of 0D (light-blue) and 1D (light-green) topological loops in F tðtÞ indicate a splash of topological fluctuations near

the inflation time t� = 9 minutes. During other periods, F tðtÞ contains only one persistent loop in each dimension. E: The instantaneous Betti numbers, b0ðF tÞ and

b1ðF tÞ increase around t� = 9 min, but retain their physical values b0ðF tÞ ¼ b1ðF tÞ ¼ 1 for the rest of the navigation period, which implies that, despite flickering-

induced deformations, the topological shape of the coactivity complex remains stable during almost the entire navigation period.

https://doi.org/10.1371/journal.pcbi.1006433.g005
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and around 40% for the third order simplexes, with the relative variances ΔN2/N2� 12% and

ΔN3/N3� 17% respectively. In other words, the perennial coactivity complex F1ðtÞ loses

about a half of its size due to the flickering of the simplexes, and fluctuates within about 15%

margins from the mean.

To quantify the changes in the complexes’ structure as a function of time, we

evaluated the number of two- and three-vertex simplexes that are present at a given

moment of time ti, but are missing at a later moment tj, normalized by the size of F tðtiÞ, i.e.,

dðkÞij ¼ NkðF tðtiÞ n F tðtjÞÞ=NkðF tðtiÞÞ, k = 2, 3. As shown on Fig 5B, these numbers, which

we refer to, respectively, as the second and third asymmetric distances between F tðtiÞ and

F tðtjÞ, rapidly grow as a function of temporal separation |ti − tj|. In fact, after approximately

the effective decay time tð2Þe , the difference between F tðtiÞ and F tðtjÞ becomes comparable to

the sizes of either F tðtiÞ or F tðtjÞ, which implies that the pool of simplexes in the simplicial

complex is replenished at the effective decay timescale. However, the shape of the coactivity

complex changes slowly: Fig 5C demonstrates that nearly 100% of the connections are shared

at two consecutive moments, i.e., the changes in flickering complex from one moment of time

to the next are marginal. Over longer periods, the flickering complex can change significantly.

For example, the proportion of simplexes that are present at t� = 9 minutes, when F t is partic-

ularly inflated, and at other moments, varies around N2ðF tðt�Þ \ F tðtÞÞ � 82% for second

and N3ðF tðt�Þ \ F tðtÞÞ � 64% for the third order simplexes (Fig 5C).

Topological dynamics

Despite the rapid recycling of the individual simplexes, the large-scale topological characteris-

tics of the flickering complex remain relatively stable. As demonstrated on Fig 5D, after the

initial stabilization period of about two minutes (which biologically may be interpreted as the

initial learning period), F t contains only one zero-dimensional and a single one-dimensional

topological loop—as the simulated environment E. Some topological fluctuations appear

around t� � 9 minutes, as indicated by an outburst of short-lived spurious loops, most of

which last less than a minute. After this period, the first two Betti numbers of F t retain their

physical values b0ðF tÞ ¼ b1ðF tÞ ¼ 1 (Fig 5E). Since Zigzag homology theory allows tracing

individual loops in F t continuously across time, these persistent topological loops can be

viewed as ongoing representations of the simply connected environment E and of the physical

hole in it. Thus, the coactivity complex F t preserves, for the most time, not only its approxi-

mate size, but also its topological shape—despite transience at the “microscale”, i.e., at the indi-

vidual simplex level.

Physiologically, these results indicate that the large-scale topological information signifi-

cantly outlasts the network’s connections: although in the discussed case about a half of the

functional links rewire within a tð2Þe -period, the topology of the cognitive map encoded by the

cell assembly network remain stable. In other words, a transient cell assembly network can

encode stable topological characteristics of the ambient space, despite transience of the

connections.

Dependence on the proper decay time τ
We investigated the topological stability for a set of proper decay times τ ranging from one

to five minutes. As one would expect, the number of simplexes in the flickering complex

increases with growing τ: in the studied map, the number of links raises from about 40% of the

maximal value at τ = 75 secs to just under 60% for τ = 200 secs, whereas the number of the

third order connections raises from 60% to about 80% (Fig 6A). The distributions of the
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effective lifetimes for the short-lived (fluttering) connections retain their exponential shapes

(see Suppl. Materials) with the means that are approximately proportional to the proper decay

times, tð2Þe � 2t and tð3Þe � t (Fig 6B and 6C). The contribution of the surviving simplexes also

steadily grows with τ (see Suppl. Materials); as a result, the net average lifetimes, computed for

the entire population of simplexes, grow faster DtB2
� 3t and DtB3

� 2t.

As τ increases, the Betti numbers rapidly reduce to their physical values,

b0ðF tÞ ¼ b1ðF tÞ ¼ 1: the lower is the connection decay rate, the smaller are the topological

fluctuations generated in the flickering complex (Fig 6D and Suppl. Materials). This is a nat-

ural result: the longer the simplexes survive, the closer the topological shape of F t is to the

topological shape of the environment E. Physiologically, it implies that the lower is the cell

assembly decay rate, the more stable is the cognitive map’s topological structure. As shown

on Fig 6D, a stabilization of topological barcode is achieved around τ� 2 minutes. This

value can also be naturally interpreted: for such τ, the rat moving at the mean speed of about

25 cm/sec has time to visit most of the environment and reactivate connections in all parts of

Fig 6. τ-dependence of the functional connections and of the topological loops. A: The number of the two-vertex cliques (N2ðF t; tÞ, green trace) and the number of

three-vertex cliques (N3ðF t; tÞ blue trace) in the decaying complex, contrasted with the total number of two- and three-vertex connections in the perennial complex

across time (N2ðF1; tÞ is shown by dashed light-green line and N3ðF1; tÞ by light-blue line). The horizontal alignment of panels is used to emphasize increase in the

asymptotic values N2;3ðF t; t � tÞ. B: The mean lifetimes of the “fluttering” links (i.e., the non-survivor links) in the coactivity complex are about twice longer than the

proper link lifetimes, tð2Þe � 2t (blue line). The mean lifetimes of all the links in the coactivity complex (i.e., including the survivor, or “core” links) are about thrice

longer than the proper lifetime, DtB2
� 3t (gray line). C: Same dependences are shown for the triple connections. The effective lifetimes of the short-lived triple

connections are approximately equal to proper link lifetime, tð3Þe � t. D: The dependence of the Betti numbers of the flickering complex, bkðF tÞ, k = 0, 1 and the

corresponding percentages of the successful trials xkðF tÞ, on the proper decay time demonstrates that the topological fluctuations in F t subside as τ increases. The

results are averaged over 10 place field maps with N = 300 randomly scattered place fields. The mean size of the place fields (20 cm) and the mean maximal firing rate

of the place cells f = 14 Hz is as above.

https://doi.org/10.1371/journal.pcbi.1006433.g006
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F t before they may decay, which allows the induced coactivity complex to contract the spuri-

ous topological loops, to assume and to retain the correct topological shape. Note however,

that this is only a qualitative argument since the expected lifetimes of over 63% of links is

smaller than τ and the lifetimes of 15% of them live longer than 2τ.

Fixed connection lifetimes

To test how these results are affected by the spread of the link lifetimes, we investigated the

case in which the lifetimes of all the links are fixed, i.e., the decay probability is defined by the

function

pðtÞ ¼

(
1 if t ¼ t

0 if t 6¼ t;
ð2Þ

while keeping the other parameters of the model unchanged. The results shown on Fig 7A

demonstrate that due to the rejuvenation effects, the range of the effective lifetimes widens

and becomes qualitatively similar to the histograms induced by the decay distribution (1). As

before, there appear two distinct populations of links: the short-lived links whose lifetimes

concentrate around the singular proper lifetime τ, and the “survivor” links, whose lifetimes

approach Ttot.

However, the topological structure of the “fixed-lifetime” coactivity complex F �

t
differs

dramatically from that of the decaying complex F t. As shown on Fig 7C, F �

t
contains a large

Fig 7. Fixed connection lifetimes lead to topological instabilities. A: The effective timelines of links with the proper decay time of τ = 100 secs (top) and τ = 200 secs

(bottom). The contribution of the links retaining the original, singular proper decay time (τe = τ) is manifested in the sharp solitary peaks on the left sides of the

histograms. The values to the left of that peak are produced by the “boundary effect”: cutting the simulation at Ttot produces timelines shorter than τ. B: The

distributions of the numbers of two- and three-vertex connections in (green and blue traces) vs. same numbers in the perennial complex F1ðtÞ (dashed lines) indicate

that the number of instantiated connections in the case of the singular distribution (2) is higher than in the case of the distribution (1) (see Figs 5A and 6A). As τ grows

twofold (from 100 to 200 secs) the number of links N2ðF
�

t
Þ grows by 40% and the number of triple connections N3ðF

�

t
) grows by 30%. C: The timelines of 0D (light-

blue) and 1D (light-green) topological loops in the τ = 100 secs (top) and in the τ = 200 secs (bottom) case. The former produces hundreds of short-lived, spurious

loops, while in the latter case there is about a dozen of loops that persist for about 50% of the time. The behavior of the corresponding Betti numbers b0 (blue) and b1

(green) is shown on panel D.

https://doi.org/10.1371/journal.pcbi.1006433.g007
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number of short-lived, spurious topological loops even for the values of τ that reliably produce

physical Betti numbers in the case of the exponentially distributed lifetimes. For example, at

τ = 100 secs, the zeroth Betti number of F �

t
hovers at the average value of hb0i � 40, reaching

at times b0� 100, with nearly unchanged b1 = 1, which indicates that F �
t

is split into a few doz-

ens of disconnected, contractible islets.

As the proper decay time increases, the population of survivor links grows and the discon-

nected pieces of F �
t

begin to pull together: at τ = 200 secs, the Betti numbers bkðF
�

t
Þ retain

their physical values most of the time, yielding occasional splashes of topological fluctuations

(Fig 7C and 7D).

These differences between the topological properties of F t and F �

t
indicate that the tail of

the exponential distribution (1), i.e., the statistical presence of long-lasting connections is cru-

cial for producing the correct topology of the flickering complex. Physiologically, this implies

that the statistical spread of the connections’ lifetimes plays important role: without it, the

dynamical cell assembly network fails to represent the topology of the environment reliably.

Randomly flickering connections

These observations led us to another question: might the topology of the flickering complex be

controlled by the shape of the lifetimes’ distribution and the sheer number of links present at a

given moment, rather than the specific timing of the links’ appearance and disappearance? To

test this hypothesis, we computed the number N2(t) of links in the decaying coactivity graph

GtðtÞ for τ = 100 sec at every discrete moment of time t (see Methods), and randomly selected

the same number of links from the maximal available pool, i.e., from the graph G1ðtÞ that

would have formed by that moment without links’ decay (Fig 8A). The collections of links ran-

domly selected at consecutive moments of time can be viewed as instances of a random con-

nectivity graph GrðtÞ, i.e., as a graph whose links can randomly appear and disappear, in

contrast with the decaying links of GtðtÞ (compare Figs 8B and 3B).

As it turns out, the random and the decaying graphs GrðtÞ and GtðtÞ, as well as their respec-

tive clique complexes F rðtÞ and F tðtÞ exhibit a number of similarities. First, the histogram

of the net lifetimes of the links in GrðtÞ shown on Fig 8C is bimodal, with an exponential com-

ponent characterized by the mean hT2i = 124 sec, and a component representing a population

of surviving connections, similar to the histograms shown on Fig 4G and 4H. Second, the

Betti numbers of the random coactivity complex F r converge to the Betti numbers of the

Fig 8. Stochastic complex. A: The number of links in the stochastic coactivity graph GrðtÞ (blue trace) is the same as in the decaying coactivity graph GtðtÞ (red trace).

B: The links of the stochastic coactivity graph GrðtÞmake instantaneous appearances and disappearances. Compare this chart to the timelines of the links in the

decaying coactivity graph GtðtÞ shown on Fig 3B. C: Histogram of the link’s net lifetimes in the stochastic graph indicates populations of short-lived and survivor links,

similarly to the histogram shown on Fig 4G. D: Betti numbers of the stochastic complex stabilize after the initial learning period of about four minutes, indicating the

emergence of a stable topological shape of the simplicial complex with stochastically flickering simplexes.

https://doi.org/10.1371/journal.pcbi.1006433.g008
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environment in about 3 minutes—about as quickly as the Betti numbers of its decaying coun-

terpart F t (Fig 8D). However, in contrast with the decaying flickering complex F t, the ran-

dom flickering complex F r keeps producing occasional one-dimensional loops over the entire

navigational period at a low rate (about 3% of the time, see Suppl. Materials). Thus, according

to the model, the topological properties of the map encoded by a network with randomly

formed and pruned connections are similar to the properties of a map produced by a network

with decaying connections, as long as the net probability of the links’ existence are same. In

either case, rapidly rewiring connections do not preclude the appearance of a stable topological

map, which once again demonstrates that the latter is a generic phenomenon.

Compensatory mechanisms

The turnover of memories (encoding new memories, integrating them into the existing frame-

works, recycling old memories, consolidating the results, etc.) is based on adapting the synap-

tic connections in the hippocampal network [47]. In particular, these processes require a

balanced contribution of both “learning” and “forgetting” components, i.e., of forming and

pruning connections [11, 12]. The imbalances and pathological alterations in the correspond-

ing synaptic mechanisms are observed in many neurodegenerative conditions, e.g., in the Alz-

heimer’s disease, which is known to affect spatial cognition [48]. However, interpreting the

physiological meaning of these alterations is a challenging task, in particular because certain

changes in neuronal activity may not be direct consequences of neurodegenerative patholo-

gies. For example, it is believed that neuronal ensembles may increase the spiking rates of the

active neurons in order to compensate for the reduced synaptic efficacies [49–55]. Such con-

siderations motivate deep brain stimulation and other treatments that help to improve cogni-

tive performance in animal models of Alzheimer’s diseases and in Alzheimer’s patients, by

increasing the electrophysiological activity of hippocampal cells [56, 57].

Previous studies, carried out for the models of perennial cell assembly networks [58], pro-

vided a certain theoretical justification for these approaches. It was demonstrated that a place

cell ensemble that fails to produce a reliable topological map of the environment due to an

insufficient number of active neurons might be forced to produce a correct map by increasing

the active place cells’ firing rates. Similarly, the reduction in the firing rates or poor spatial

selectivity of spiking may sometimes be compensated by increasing the number of active cells

and so forth. Since the current model allows modeling networks with transient connections,

we wondered whether it might indicate a theoretical possibility to compensate for the reduced

cell assemblies’ lifetimes by altering the place cell spiking parameters.

To that end, we varied the mean firing rate f and the number of cells N in the simulated

place cell ensemble and studied the topological properties of the resulting coactivity complex

as a function of the links’ proper half-life, τ. The results shown on Fig 9 demonstrate that

indeed, increasing neuronal activity helps to suppress topological fluctuations in the flickering

coactivity complex for a wide range of the connections’ decay times. Moreover, these changes

also increase the proportion of trials in which the place cell ensemble captures the correct sig-

nature of the environment (see Suppl. Materials).

Physiologically, these results indicate that recruiting additional active cells and/or boosting

place cell firing rates helps to overcome the effect of overly rapid deterioration of the network’s

connections, i.e., increasing neuronal activity stabilizes the topological map. In particular, a

higher responsiveness of the Betti numbers of the flickering coactivity complex to an increase

of the mean firing rate (Fig 9C and 9E) as compared to the number of active place cells (Fig

9A) suggests that targeting the active neurons’ spiking may provide a better strategy for design-

ing clinical stimulation methods.
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Discussion

The formation and disbanding of dynamical place cell assemblies at the short- and intermedi-

ate-memory timescales enable rapid processing of the incoming information in the hippocam-

pal network. Although many details of the underlying physiological mechanisms remain

unknown, the schematic approach discussed above provides an instrument for exploring how

Fig 9. Suppression of the topological fluctuations by increasing neuronal spiking activity. A: As the number of active cells increases, the number of spurious

topological loops drops. To compactify the information, we use the sum of the first two Betti numbers, b = (b0 + b1), which describes the total number of 0D and 1D
loops as a function of decay rate τ, computed for several ensemble sizes. As the number of active cells with mean firing rate f = 14 Hz increases from N = 100 to N = 400

cells, the number of loops decrease from 3-4 (indicating at least one spurious loop in 0D or in 1D) to the physical value b0ðEÞ þ b1ðEÞ ¼ 2. B: The proportion of trials

—the success rate, ξ—in which the coactivity complex produces the correct signature, bkðF tÞ ¼ bkðEÞ, as a function of the number of cells, N. Larger place cell

ensembles tend to represent the topology of the environment more reliably. C: Sum of Betti numbers encoded by an ensemble of N = 300 place cells. As the mean

ensemble firing rate increases from f = 8 to f = 24 Hz, the spurious loops die out, i.e., the topological fluctuations in F t are suppressed. D: The success rate ξk as a

function of the decay rate τ, computed for N = 300 place cells and a set of ensemble mean firing rates. As before, the reliability of the map increases with the ensemble

mean rate, for the entire range of the proper decay times. E: Betti numbers bkðF tÞ, k = 0, 1, converge to their physical values bkðEÞ faster and their respective success

rates ξk grow more rapidly at higher firing rates.

https://doi.org/10.1371/journal.pcbi.1006433.g009
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the information provided by the individual cell assemblies may combine into a large-scale spa-

tial memory map and how this process depends on the physiological parameters of neuronal

activity. In particular, the model demonstrates that a network with transient connections can

successfully capture the topological characteristics of the environment.

Previously, we investigated this effect using an alternative model of transient cell assemblies,

in which the connections were constructed by identifying the pool of cells that spike within a

certain “coactivity window,” $, and building the coactivity graph G$ from the most frequently

cofiring pairs of neurons [58]. The accumulation of topological information within each

$-period, was then described using persistent homology theory techniques. The results indi-

cate that if $ extends over 4-6 minutes or more, the topological fluctuations in the flickering

complex are suppressed and the topological shape of F$ becomes equivalent to the shape of

the environment.

In the current model, enabled by a much more powerful Zigzag persistent homology theory

[34–36], we employ an alternative approach, in which the links of the coactivity graph appear

instantly following pairwise place cell coactivity events. Thus, in contrast with the model dis-

cussed in [58], the current model involves no selection of the “winning” coactivity links, which

one might hold responsible for stabilizing the shapes of the flickering coactivity complexes.

Nevertheless, this model demonstrates the same effect: the large-scale topological shapes of

resulting coactivity complexes stabilize, given that the connections decay sufficiently slowly

and have sufficiently broadly distributed lifetimes. The connections’ lifetimes required to

achieve such stabilization in the “latency free” model are longer than in the input integration

model (τ� 100 sec vs. t$ � 10 sec), which indicates that physiological networks may integrate

spiking information over a certain extended period $ and optimize the network’s architecture

over this information. However, the fact that stable topological maps can emerge in all these

different types of transient networks (including randomly flickering networks) suggests that

this is a generic effect that fundamentally may be responsible for the appearance of stable

cognitive representations of the environment in the physiological neuronal networks with

transient connections. In other words, the emergence of stable topological maps may represent

a common “umbrella” phenomenon that can be implemented via different physiological

mechanisms.

In all cases, the model reveals three principal timescales of spatial information processing.

First, the ongoing information about local spatial connectivity is rapidly processed at the work-

ing memory timescale, which physiologically corresponds to rapid forming and disbanding of

the dynamical place cell assemblies in the hippocampal network. The large-scale characteristics

of space, as described by the instantaneous Betti numbers, unfold at the intermediate memory

timescale. At the long-term memory timescale the topological fluctuations average out, yield-

ing stable, qualitative information about the environment. While the former may take place

in the hippocampus, the latter two might require involvement of the cortical networks. Thus,

the model reaffirms functional importance of the complementary learning systems for pro-

cessing spatial information at different timescales and at different levels of spatial granularity

[47, 59, 60].

Methods

Simulated environment E represents a small (1m × 1m) square arena with a square hole in the

middle, similar to the environments used in electrophysiological experiments [61]. Fig 10

shows the simulated trajectory, the uniform layout of the place fields in the place field map ME ,

and the occupancy map. In [26] we demonstrated that different parts of the environment can
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be learned independently from one another. Thus, knowing how learning works in smaller

domains, one can “map out” learning in larger environments.

Place cell spiking activity is modeled as a stationary temporal Poisson process with the

maximal firing rate fc localized at the place field center rc,

lcðrÞ ¼ fce
�
ðr� rcÞ2

2s2c

where sc defines the place field’s size [62]. If the place field centers are scattered uniformly over

the environment, then an ensemble of N place cells, c = 1, . . ., N, is defined by 2N independent

parameters, which we consider as random variables drawn from stationary lognormal distri-

butions with the respective means f and s. In addition, spiking is modulated by the θ-rhythm

of the hippocampal extracellular local field oscillations, with the frequency of� 8 Hz [63].

The distributions parameters and the details of the spike simulation algorithms are provided

in [25, 26].

Place cell coactivity

We consider a group of place cells c0, . . ., ck coactive, if they produce spikes within two conse-

cutive θ-periods [26, 43]. As a result, the time interval [0, Ttot] splits into 1/4 sec long time bins

that define the discrete time steps t1, . . ., tn.

Simplicial complexes

We use simplexes and simplicial complexes to represent combinatorially the topology of the

neural activity. An abstract simplex of dimensionality n is a set containing n + 1 elements. A

subset of a simplex is called its face. A simplicial complex is a collection of simplexes closed

under the face relation: if a simplex belongs to a simplicial complex, then so do all of its faces

(Fig 11).

In the constructions studied in this paper, our simplicial complexes consist of coactive

place cells. If all cells {c0, . . ., ck} are coactive within a given time window, then so is any subset

of them, meaning coactive simplexes form a complex. In fact, because coactivity is defined

for a pair of cells, our simplexes are precisely the cliques in the coactivity graph. A simplex

{c0, . . ., ck} is present if and only if all of its cells are pairwise coactive.

Fig 10. Simulated environment. A: The trajectory covers a small planar arena E uniformly, without artificial circling or other ad hoc favoring of one segment of the

environment over another. B: Simulated place field map ME . Clusters of dots of a particular color represent spikes produced by the corresponding place cells. C: A 2D
histogram of the time spent by the animal in different locations—the occupancy map of E.

https://doi.org/10.1371/journal.pcbi.1006433.g010
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In flickering clique complexes, certain pairwise connections may decay over time, while

others appear as time progresses. The effect on the simplicial complex is that some simplexes

are removed from the complex, while others are added to it. So we get a sequence of “flickering

complexes,” Xi, connected by alternating inclusions:

X1 � X2 � X3 � X4 � X5 � . . .

Cycles, boundaries, and homology

A k-dimensional chain is a set of k-dimensional simplexes (Fig 11) that can be combined

with suitable coefficients. If the coefficients form an algebraic field, then the chains form

a vector space. Here we use the simplest algebraic field Z2, which consists of two Boolean

values 0 and 1. A boundary of the simplex is the sum of its one-dimension-lower faces:

@kfc0; . . . ; ckg ¼
Pk

i¼0
fc0; . . . ; ci� 1; ciþ1; . . . ; ckg. The map extends linearly to the entire sim-

plicial complex, X, mapping its k-dimensional chains to its (k − 1)-dimensional chains. The

kernel of this map, i.e., all the chains without a boundary, is the set of cycles of the complex,

denoted by Zk(X) = ker @k. The image of @k+1 consists of the k-dimensional chains that are

boundaries of some (k + 1)-dimensional chains, denoted by Bk(X) = im @k+1.

Fig 11. Simplexes and simplicial complexes. A: A zero-dimensional (0D) simplex s0
i corresponds to a point vertex vi; a one-dimensional (1D) simplex s1

ij—to a link

between two vertexes vi and vj; a two-dimensional (2D) simplex s2
ijk —to a filled triangle; a three-dimensional (3D) simplex s3

ijkl—to a filled tetrahedron, etc. The n
vertexes connected by the full set of 1D links form cliques, σn, of the corresponding order. B: A single simplex σn is a contractible figure, i.e., it can be collapsed into one

of its facets σn−1, then to a facet of lower dimensionality σn−2 and eventually to a point σ0. Shown is a triangle contracting onto its bottom edge and then to the right

vertex. C: A linear chain of simplexes bordering each other at a common face is also contractible. The shade of the triangles constituting the chain defines the order in

which the triangles can be contracted (the lighter is the triangle, the sooner it contracts) and the arrows indicate the direction of the contractions. D: If a chain of

simplexes loops onto itself and encircles a gap in the middle, then it is not contractible. Collapsing the triangles on the sides of such a closed chain produces an

equivalent closed loop, which, ultimately, can be reduced to a non-contractible 1D loop, but not to a 0D vertex (the hole in the middle prevents that). Topologically, the

deformed loops are equivalent to one another, i.e., they should be viewed as deformations of the same topological loop. E: Three simplicial complexes: a complex

shaped as the environment E (see Fig 2), a toroidal and a spherical complexes (figures obtained using MATLAB mesh generator [64]). Non-contractible topological

loops are shown as closed chains of red triangles and contractible loops are shown in shades of blue.

https://doi.org/10.1371/journal.pcbi.1006433.g011
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Cycles count “k-dimensional holes” in the complex. But not all such holes are independent

of each other. We consider two cycles equivalent, or homologous, if they differ by a boundary.

Algebraically, one can verify that boundaries themselves have no boundaries, @k � @k+1 = 0. In

other words, boundaries are cycles. This allows us to take a quotient, Hk(X) = Zk(X)/Bk(X),

called the k-dimensional homology vector space. By definition, it considers two cycles equiva-

lent, if their difference is a boundary of some (k + 1)-dimensional chain. The dimension of this

vector space, called the k-th Betti number, βk(X) = dim Hk(X), counts the number of indepen-

dent holes in the topological space.

Zigzag persistent homology

Given the sequence of flickering complexes above, we compute homology of each one. Inclu-

sions between complexes induce maps between the homology vector spaces: the homology

class of a cycle in the smaller complex maps to the homology class of the same cycle in the

larger complex. Accordingly, we get a sequence of homology vector spaces, connected by lin-

ear maps:

HkðX1Þ ! HkðX2Þ ! HkðX3Þ  HkðX4Þ ! HkðX5Þ  . . .

This sequence, called zigzag persistent homology, generalizes ordinary persistent homology

[36], where all the maps between homology groups point in the same direction. It is this gener-

alization to the alternating maps that allows us to handle the flickering complexes.

On the surface, zigzag persistent homology tracks how the Betti numbers of the flickering

complexes change. But the maps that connect homology vector spaces provide extra informa-

tion. It is possible to select a basis for each vector space in this sequence, so that the bases for

adjacent vector spaces are compatible [34]. Specifically, we can select a collection of elements

fzjigj for each vector space Hk(Xi), such that the non-zero elements form a basis for the homol-

ogy vector space Hk(Xi)—in other words, they represent a set of independent holes in Xi. Fur-

thermore, such collections are compatible in the sense that adjacent basis elements map into

each other: if we have a map f: Hk(Xi)! Hk(Xi±1), then f ðzjiÞ ¼ zji�1, if zji 6¼ 0. The experiments

in this paper use the algorithm of Carlsson et al. [35] to compute such compatible bases.

It follows that the sequence of homology vector spaces can be decomposed into a barcode,

where each bar represents the part of the sequence, where a particular basis element is non-

zero. The bars capture when independent holes appear in the flickering complex, how long

they persist, and when they eventually disappear. The authors will provide the software used

for these computations upon request.

Supporting information

S1 Fig. Statistics of the connections’ lifetimes. A: Histograms of the intervals between conse-

cutive births (b) and deaths (d) of the pairwise (DtBi ¼ tðdiÞ
B
� tðbiÞ

B
, left column of panels) and

triple (DtB3
i
¼ tðdiÞ

B3 � tðbiÞ
B3 , right column of panels) connections, for five values of the proper

decay times τ. The red line outlines the exponentials with proper decay time 1/τ and the dark-

blue line shows the exponential fit of the histogram with the decay rate 1/τe, computed for the

under 16 minutes long intervals. The exponential fit to the histogram of the effective lifetimes

of short-living triple connections (DtB3 < 10 minutes) is shown by dark-green line on the right

panels. The mean lifetime for the entire population of links, Δtk, is shown at the on each panel.

(TIF)
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S2 Fig. Longer decay times suppress topological instabilities. A: Timelines of 0D (light-blue)

and 1D (light-green) topological loops in the flickering coactivity complex, computed for four

values of the proper decay time τ. B: The corresponding Betti numbers, b0ðF tÞ (blue) and

b1ðF tÞ (green).

(TIF)

S3 Fig. Topological properties of the random complex. A. Four tests of the topological

behavior of the random complex F r indicate that after initial period of about 3 minutes, this

complex produces occasional one-dimensional topological loops in only 3% of the time (suc-

cess rate ξ = 0.97 in all cases). B. The numbers of double and triple connection remains approx-

imately the same from case to case.

(TIF)

S4 Fig. Suppression of topological fluctuations by increasing place cell firing rates. The six

consecutive pairs of rows (colors alternate for illustrative purposes) correspond to the ensem-

ble mean firing rate f = 12, 14, 16, 18, 20 and 24 Hz. The proper decay time increases along

each pair of rows from τ = 75 to τ = 200 secs, uniformly across the intermediate values. As τ
increases, the percentage of times (ξ) during which the Betti numbers bkðF tÞ, k = 0, 1, remain

equal to their physical values increases, for all ensemble mean firing rates. The higher is the

ensemble mean frequency rate, the smaller are the topological fluctuations across the entire

range of τs.

(TIF)
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