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Abstract

Machine learning has emerged as an attractive alternative to experiments and simulations for predicting
material properties. Usually, such an approach relies on specific domain knowledge for feature design:
each learning target requires careful selection of features that an expert recognizes as important for
the specific task. The major drawback of this approach is that computation of only a few structural
features has been implemented so far, and it is difficult to tell a priori which features are important for a
particular application. The latter problem has been empirically observed for predictors of guest uptake in
nanoporous materials: local and global porosity features become dominant descriptors at low and high
pressures, respectively.

We investigate a feature representation of materials using tools from topological data analysis.
Specifically, we use persistent homology to describe the geometry of nanoporous materials at various scales.
We combine our topological descriptor with traditional structural features and investigate the relative
importance of each to the prediction tasks. We demonstrate an application of this feature representation
by predicting methane adsorption in zeolites, for pressures in the range of 1–200 bar. Our results not
only show a considerable improvement compared to the baseline, but they also highlight that topological
features capture information complementary to the structural features, which is especially important for
the adsorption at low pressure, a task particularly difficult for the traditional features. Furthermore, by
investigation of the importance of individual topological features in the adsorption model, we are able to
pinpoint the location of the pores that correlate best to adsorption at different pressure, contributing to
our atom-level understanding of structure-property relationships.

1 Introduction

Nanoporous materials, such as zeolites, are critical to many industrial sectors and are commonly used as
membranes, adsorbents for separations, storage and delivery, and heterogeneous catalysts [1]. Along with
zeolites, advanced porous materials (APMs) such as metal organic frameworks (MOFs), covalent organic
frameworks (COFs), and related families of materials, have been investigated in the context of the above and
other applications [2]. An important factor that determines the utility of any nanoporous material is that
its pore morphology and the corresponding material structures are configured to maximize the performance
in its respective application. Finding the materials that satisfy the latter is therefore necessary to develop
more efficient, cleaner, and cheaper technologies. The nanoporous materials space is immense: there are
more than 1400 zeolite materials already reported that belong to more than 200 unique topologies [3].
However, these experimentally known zeolites constitute only a very small fraction of more than 2.7 million
of hypothesised structures [4], though the latter number may be orders of magnitude smaller than can be
synthesized [5]. APMs have an even higher number of both already synthesized and predicted structures [6, 7],
as their frameworks allow for greater flexibility in choosing diverse building blocks of various chemistries and
topologies.
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Over the last decade, there has been a growing effort to employ computational techniques to navigate the
space of possible nanoporous materials and choose promising candidates for various applications. Molecular
simulations allow the study of important guest molecule phenomena in zeolites and APMs, such as adsorption
and diffusion [8]. Henry coefficients, heats of adsorption, adsorption isotherms, and diffusion coefficients
of guest species can be predicted and there is solid evidence in the literature that these predictions are
accurate [9, 10]. Initial attempts to screen for optimal materials have employed quite small collections
of nanoporous materials, which could be characterized in their totality using molecular simulations (i.e.
brute-force screening). The size of these studies were limited by the size of crystal structure databases,
which at that time contained only experimentally known zeolites and early MOFs. The research landscape
has changed dramatically with the introduction of databases of predicted nanoporous materials such as
hypothetical zeolites [4], which posed a significant computational challenge for the brute-force approach.

As a result, an entire spectrum of high-throughput screening tools and approaches have been developed in
the last decade, which can be grouped into two categories. The first consists of techniques that limit the
number of structures to be investigated using expensive molecular simulations, examples of which include
1) tools enabling screening filters based on porosity descriptors [11], 2) substructure similarity screening
and material diversity-based data reduction [12, 13], and 3) efficient searches using genetic algorithms or
optimization approaches [14]. The second category consists of techniques accelerating prediction of properties
of each material in the considered set, examples of which are 1) GPU-accelerated molecular simulations [15],
2) simplified simulations and models, and finally 3) machine learning prediction trained using the simulation
results of a relatively small subset of materials [16, 17]. The latter approach is of particular interest as there
is sufficient evidence to show that it can provide high accuracy, robustness, and the throughput necessary to
tackle ever-increasing datasets.

Machine learning models aim to predict the material property of choice by using a function fitted on a set
of known properties and operating on a material representation as its input. There are a number of frameworks
for these fittings that include algorithms such as random forests, neural networks, and support-vector machines,
all of which have examples of successful applications in materials, and are often interchangeable. A suitable
material representation poses a greater challenge. Typically, domain experts need to select specific material
features to serve as model input, used for making predictions about a particular property. Standard examples
of such features include density of the material, cohesive energy per atom, and volume per atom [18].

In the context of nanoporous materials, one of the most desired properties to predict is a guest adsorption
loading at given temperature–pressure conditions. Naturally, guest adsorption is determined by the morphology
of the materials’ pores, where guest molecules will be located and interacting with the material structure.
Porosity descriptors such as accessible surface area (ASA), largest cavity diameter (LCD), and others have
been primary targets to be used to construct feature vectors. There are a growing number of models
successfully trained and employed to predict adsorption of methane at conditions relevant to vehicular storage
applications [19], CO2 in carbon capture [20], and Xe in Xe separations from air [17]. These early studies
have highlighted challenges related with the selection and implementation of relevant feature vectors.

In the case of high pressure gas adsorption, guest molecules generally occupy the entire void space
available in a material. Therefore, inclusion of a “global” material porosity descriptor such as ASA leads
to predictive models with these features becoming the most important to the model. Empirically, this and
similar correlations have been observed: for example, the Chachine rule in hydrogen storage application,
which states that one weight percent of H2 can be stored per 500 m2/g of a materials’ ASA [21]. However, in
the case of low pressure adsorption, guest molecules tend to be localized in the strongly binding regions of
the material’s pore [22], which are typically not captured well with the standard porosity descriptors. To
account for this, specific descriptors can be developed: for example, Voronoi energy was introduced [17], but
at substantial development effort and with unknown application transferability potential.

The current state of the field suggests a significant need and potential payoff for the development of
robust generic descriptors that would capture porosity features across pore scales and allow for generalized
models for prediction of adsorption loadings at various pressures. In this paper, we focus on multi-scale
topological features that describe the connectivity of the pore space of the material. Specifically, we use
persistent homology [23] to compute topological signatures of the channels and voids constituting the porosity
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of a material, thereby capturing their number and size. We convert these signatures to vector representations,
facilitating supervised machine learning algorithms to predict material properties. We note that persistent
homology is very general and not tailored to a specific application. Instead, the labels in the training data
allow machine learning algorithms to decide which subset of the features is important to a particular problem.

While there has been previous work applying topological data analysis to nanoporous materials [24], it
focused on using standard, global metrics on topological signatures to cluster the crystal structures. A more
recent work [25] was also concerned with using topological signatures for supervised learning of nanoporous
material properties. However, the authors turned topological descriptors into simplified feature vectors, which
lost the ability to correlated the performance with specific topological features. In contrast, our goal is to use
topological signatures with supervised machine learning to predict a material property, while simultaneously
identifying the parts of the signature important for the prediction.

We demonstrate our approach in an application of prediction of methane adsorption in all silica zeolite
structures, for which large sets of simulated data are available [26]. We show that our topological model
outperforms existing porosity descriptors when it comes to predicting adsorption properties, using a number
of metrics including root-mean-square error, R2 score, and the Spearman correlation coefficient. Furthermore,
we show that unlike the handcrafted structural features, the topological features give accurate predictions
across a wide range of pressures. We also show that the best model includes a combination of topological
and structural features, meaning that the two capture complementary information about the material.
Furthermore, our approach allows for identification of the structural features related with the important
topological descriptors identified within the topological model, hence providing atom-level understanding of
the origin of the property of interest.

2 Methods
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Figure 1: Computational pipeline.

A schematic view of the computational pipeline is depicted in Figure 1. In the initial step, material
structures are analyzed to identify features present at various length scales. In particular, after normalizing
the size of the structure representations, we compute their alpha shape filtrations, whose persistence diagrams
we use as the topological signature of each material. Then, we vectorize these diagrams by turning them
into so-called persistence images. Such vector representations are used together with the results of predicted
guest uptakes to train random forest regression models for adsorption at different pressures. Finally, we
compare different measures of the quality of the regression across choices of features and pressures. The rest
of this section explains the methodology of the pipeline in more detail, as well as the material dataset used to
demonstrate the approach.

Zeolite morphology. Zeolites are crystalline structures. They are typically represented by the positions
of atoms with respect to the periodic cell, which can be implicitly replicated over an arbitrarily large volume.
The cells themselves have vastly different sizes. To normalize the calculation, we prepare a 100Å × 100Å ×
100Å supercell of each material. This size is chosen to be at least 2–3 times larger than the largest base cell.
A similar approach of representing materials by their spherical supercell was employed earlier [27].
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Figure 2: Left: a point set P ; a union of balls (gray) of fixed radius r, centered on the point set; a Voronoi
diagram (dashed); an alpha shape Alphar(P ) (points, solid edges, and pink triangles). Right: 1-dimensional
persistence diagram of the alpha shape filtration of P ; the blue point represents the cycle highlighted in blue
on the left.

We model the pore structure of the materials across scales. Specifically, we take the union of balls around
the atoms and vary their radii. We track how the topology of this union (and, dually, of its complement —
the pore space) changes. To represent this union combinatorially, we use alpha shapes. Briefly, given a point
set P , a Voronoi cell of a point, p, consists of all points of the ambient space that are closer to p than to any
other point in P :

Vor(p) =
{
x ∈ R3 | ‖x− p‖ ≤ ‖x− q‖ ∀q ∈ P

}
.

An alpha shape of P for radius r consists of all the subsets σ of P , where the intersection of the Voronoi cells
and the balls of radius r around the points p ∈ σ is not empty:

Alphar(P ) =

{
σ ⊂ P |

⋂
p∈σ

Br(p) ∩Vor(p) 6= ∅

}
.

Figure 2 illustrates a point set and its alpha shape for a fixed radius. Geometrically, an alpha shape consists
of points, edges, triangles and tetrahedra that are a subset of the Delaunay triangulation. More importantly
for us, an alpha shape for radius r has the same topology as the union of balls of the same radius.

By construction, alpha shapes nest as we increase their radius: Alphar(P ) ⊆ Alphar′(P ) for r < r′. Their
nesting across all radii forms an alpha shape filtration. We compute the alpha shapes using the software
package DioDe,1 which is a Python binding to the relevant functionality in the computational geometry
library CGAL.2

Persistent homology. Persistent homology tracks the changes of homology groups in a filtration. We do
not define homology formally — there are thorough surveys [23, 28] of all the relevant concepts — but note
that this algebraic topological invariant records the number of connected components, loops, and voids in a
space. Given an alpha shape filtration of a point set, the homology groups of the nested spaces are connected
by linear maps:

H(Alphar1(P ))→ H(Alphar2(P ))→ . . .→ H(Alpharn(P )).

By following the changes in the sequence, one can identify pairs of radii, when a homology class (e.g., a loop
or a void) appears and subsequently disappears: i.e., when a tunnel or a pocket appears and then closes up

1github.com/mrzv/diode
2cgal.org
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in the pore space. Such pairs of radii are called birth–death pairs, (b, d). The bigger the difference, d − b,
between death and birth, the more prominent, or persistent, is the class, and the more pronounced is the pore.

The full collection of birth–death pairs for a filtration is called a persistence diagram, Dgmk(P ); see
Figure 2. There are three non-trivial diagrams for the alpha shapes in three dimensions. The 0-th diagram
records the evolution of connected components in the filtration; the 1-st diagram, loops; the 2-nd diagram,
voids. In the remainder, we use only the 1-st and 2-nd diagrams — the 0-th diagram, the structure of
connected components, does not have much information beyond the distances between nearest neighbor
atoms. We compute the persistence diagrams from alpha shapes using the software package Dionysus.3

Persistent homology has many attractive properties. A crucial one has to do with its resilience to noise:
persistence is stable. If we perturb the point set a little, the persistence diagram changes only a little. To be
precise, let dH denote the Hausdorff distance between two points sets:

dH(P,Q) = max

{
max
p∈P

min
q∈Q
‖p− q‖,max

q∈Q
min
p∈P
‖p− q‖

}
.

Let dB denote the bottleneck distance between persistence diagrams:

dB(Dgmk(P ),Dgmk(Q)) = inf
γ

sup
x∈Dgmk(P )

‖x− γ(x)‖∞,

where γ : Dgmk(P )→ Dgmk(Q) is a bijection between the persistence diagrams.4 Stability means that the
former upper bounds the latter:

dB(Dgmk(P ),Dgmk(Q)) ≤ dH(P,Q).

Persistence images. Persistence diagrams are multi-sets of points in the plane. Most machine learning
algorithms operate on points in a fixed-dimensional Euclidean space. To translate the former to the latter,
Adams et al. [29] introduced persistence images, which, after transforming the birth–death pairs (b, d)
into birth–persistence pairs (b, d − b), replace each one by a Gaussian (to spread its influence across the
neighborhood, since nearby points represent features of similar size), and weigh each point in the plane:

f(x, y) = w(y)
∑

(b,d)∈Dgm(P )

N ((b, d− b), σ).

Persistence images result from discretizing f(x, y) by integrating its value within each grid cell of fixed
dimensions. Adams et al. choose the weighting so that w(y)→ 0 as y → 0, for example, the linear weighting,
w(y) = y. This choice places more weight on persistent points and ensures the stability of the persistence
images. Since we do not know a priori which pore size is significant for our application, and because we are
not as concerned with stability — zeolite structures are derived within crystal symmetry constraints and thus
suffer at most from the floating point error in the atomic coordinates — we also experiment with using no
weighting, w(y) = 1.

We use a modified version of the PersIm package5 to compute persistence images. We choose a resolution
of 50 × 50 and a spread σ = 0.15. We also tried spreads of 0.05, 0.10, 0.15, and 0.20, but the results had
similar accuracy in the range of 0.10–0.20. Similarly, we also tried different resolutions ranging from 10× 10
to 100× 100 and found that the middle range of 50× 50 had the best accuracy. The images were scaled on
the x-axis by the maximum birth value across all diagrams and on the y-axis by the maximum persistence
value across all diagrams.

3https://github.com/mrzv/dionysus
4For technical reasons, including to make the bijection γ well-defined, persistence diagrams include all the points on the

diagonal, taken with infinite multiplicity. We do not dwell on this detail, but refer the interested reader to the surveys [23, 28].
5persim.scikit-tda.org
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Data sets. To demonstrate an application of our approach, we have employed a dataset constituting of
crystal structures of all silica zeolites, for which methane adsorption isotherms were determined previously [26].
Specifically, this set contains 55,039 structures composed on a subset of the PCOD hypothetical zeolite
database [4] and a subset of the IZA-recognized zeolites [3]. Adsorption isotherms were determined using grand-
canonical Monte Carlo simulations involving classical Lennard-Jones potential models the framework–guest
and guest–guest interactions [26]. Isotherms were sampled at 14 pressures in the 1–200 bar range.

For each structure in our set, we have determined the values of the following commonly used descriptors
which we refer to as baseline descriptors:

• Accessible volume (AV), in (cm3/g), calculated as the total AV resulting from a summation of contribu-
tions from methane-accessible channels and non-accessible pockets;

• Accessible surface area (ASA), (cm3/cm3), also calculated with the inclusion of inaccessible pockets;
• Crystal density (ρ), in (kg/m3);
• Pore Limiting Diameter (PLD), in (Å), the diameter of the largest sphere to percolate through material;
• Largest Cavity Diameter (LCD), in (Å), the diameter of the largest sphere than can fit inside the

material’s pore system.
The values for the above descriptors were computed using the Zeo++ software package [30].

Random forests. We use random forest [31] regression to predict the methane adsorption at 14 different
pressures, from 1 to 200 bar. Random forests are ensembles of decision trees. Each decision tree is built
recursively by finding a feature, which allows for a cut that maximizes the information gain about the target
value. Each tree in the ensemble is built on features chosen at random. The frequency with which each
feature is chosen for making a cut serves as an estimate of its importance for the target problem. Such an
ability to assign importance to features and to combine features across different modalities, independently of
their scale, is the main reason for our choice of random forests.

We build the trees for different combinations of the features to evaluate their relative importance. We use
1- and 2-dimensional persistence images separately and together. Additionally, we employ baseline structural
features, described in the previous paragraph, as well as a combination of the two types of features, topological
and structural.

We train the random forest on the specific methane adsorption of each material at a given pressure. Each
of our forests consists of 500 trees, and the final methane prediction is the average of the prediction of all the
trees in the forest. After training the random forest on the training set, predictions are made on an unseen
test set. We evaluate the quality of the prediction by comparing the predicted and the correct adsorption
values. We compute the root-mean-square deviation,

√∑
(ŷi − yi)2/n, the coefficient of determination (R2),

1−
∑

(yi − ŷi)2)/
∑

(yi − ȳ)2, and the Spearman rank coefficient, which computes how well the prediction
captures the ordered ranking of the materials by computing the Pearson correlation between the ranks of the
predicted and true methane adsorption values, which represents a typical material screening application.
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3 Results
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Figure 3: Schematic outlining the (a) zeolite structure, (b) persistence diagram plotted as birth vs. death,
which is then (c) linearly transformed to birth vs. persistence, and then expressed as a (d) persistence image.
All the diagrams are scaled based on the maximum birth, death, and persistence of the whole data set.
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Figure 4: Comparison of root-mean-square deviation (top-left), coefficient of determination (bottom-left), and
Spearman rank coefficient (bottom-right) in predicting methane adsorption for different features at different
pressures. Top-right: plot legend.

Figure 4 shows the performance of different sets of features in predicting methane adsorption in the 1-200 bar
pressure range, measured using the root-mean-square deviation (RMSD), the R2 score, and the Spearman
rank coefficient. The RMSD is low at lower pressures because the distribution of methane adsorption has low
variance in that regime. The overall trend of all three metrics is the same: the baseline features perform
better than 1-dimensional topological features alone; they also perform better than 2-dimensional features
with linear weights at higher pressures. 2-dimensional topological features perform better than baseline
(except with linear weights at higher pressures), and combined 1- and 2-dimensional topological features
always perform better than the baseline. However, the best results are derived from combining topological
and baseline structural features. This clearly shows that topology contributes complimentary information to
the baseline and significantly improves performance of our regression model (with R2 increasing from .52 to
.76 at 1 bar and from .73 to .87 at 200 bar).

A particularly interesting revelation of our experiments is the role the weights, used to construct the
persistence images, play in the performance of our models. The linear weights, which guarantee stability
of the persistence images, perform worse for all but the highest pressure than no weights, which make no
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such guarantees. Our best explanation of this behavior is the following. Linear weights make an implicit
judgement about the significance of the width of the channels and the diameter of the voids, determining the
narrower and smaller topological features (those with lower persistence) to be less important. This scheme is
reasonable for many uses of persistence, and indeed ensures the stability of persistence images by limiting
the effect of the smaller topological features that result from noisy perturbation of the data. However, with
zeolite structures, there is no such error. The atomic coordinates lie on a crystal lattice and the only error we
expect is the floating point error. On the other hand, small topological features are related to the roughness
of the pore surface, making them important to our application. These observations highlight a major strength
of our approach: instead of relying on the pre-determined weights that assign significance to the different
regions of the persistence diagrams and images, we let the supervision involved in the learning process to
assign the appropriate weights to the different parts of the images. As Figure 5 illustrates, the weights the
algorithm chooses do not decay with persistence.

The ability to determine the weights — more accurately, the feature importance — in our model is one
of our main motivations for using the random forest. This algorithm builds an ensemble of decision trees,
choosing a random subset of features for each one. The frequency with which a particular feature is chosen
for a split, across the ensemble, is its importance. Figure 5 shows the importance of the features for the 1-,
2-dimensional topological and the baseline features at three different pressures (low, medium, and high). The
color map differs for each plot (even within a single pressure), to make the low values more visible.

From these plots, it is possible to pinpoint the birth and persistence values that correlate most strongly
to predicting methane adsorption. As these values describe the voids in a crystal structure, they directly
correspond to the structure of the zeolite and thus make it possible to elucidate the porous structure of
materials with high methane adsorption. Figure 6 shows an example of the representative cycle for the
most important 2-dimensional topology features for a zeolite (ACO) with high methane adsorption, i.e.
the porous structure corresponding to the birth and persistence values in Figure 5. A notable property of
nanoporous materials is their tunability, i.e. the ability to produce a material with precisely sized pores.
Thus, understanding the porous structure correlating to a material property of interest provides insight into
synthesizing such a material.

Moreover, the feature that we identify in Figure 6 includes fragments, which are rings containing eight
silica atoms. Similar features were identified in the top adsorbing zeolites identified by brute-force screening
in an earlier study [26].

The relative importance of the three different types of features is shown in Figure 7. The 1- and 2-
dimensional topology plots show the regions of birth and persistence values, which are the best predictors for
methane adsorption. Although they change across pressures, these changes are small. In contrast, LCD is the
most important feature at low pressures, but ASA becomes the most important feature at higher pressures.
It numerically illustrates the empirical observations from earlier studies that local and global features are less
transferable across different pressures in comparison to the topology-based features.
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Figure 5: Feature importance of the 1D topology, 2D topology, and baseline features at low (5.8 bar), medium
(40 bar), and high (100 bar) pressures. The feature importance colormap is scaled relative to each individual
plot. The relative contribution of 1D, 2D topology and baseline features appears in Figure 7.
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Figure 6: Representative cycle (as highlighted by the points enclosing the blue structure) of the most
important 2-dimensional topology features of a high methane adsorption zeolite, ACO. The porous structure
corresponds to the birth and persistence values in Figure 5 that are most predictive of methane adsorption.

Figure 7 shows how the relative importance of the three different types of features changes with pressure.
Each bar is the sum of feature importance in the combined model, using all three types of features. The
plot confirms what we have already observed in Figure 4. At low pressures, topological features perform
significantly better than the baseline features and the model places most of its weight on them. As the
pressure increases, more weight is assigned to the baseline features, although even at the highest pressure, the
combined weight on the topological features exceeds 34% (with most weight assigned to the 2D topological
features).

A more recent work [25] is also concerned with using topological signatures for supervised learning of
nanoporous material properties. However, there is a key difference from our work: the way it turns topological
descriptors into feature vectors relies on constructing ad hoc handcrafted summaries, making it impossible to
localize its important subsets. Accordingly, as the authors show [25], the most important of these (global)
features closely correlate with the standard structural features, namely, ASA and LCD in our terminology
above. In contrast, we input topological descriptors into machine learning algorithms with minimal processing,
allowing us both to extract finer information about their important subsets and to show that they capture
information complementary to the traditional structural features. Although Zhang et al. [25] consider a
slightly different learning task than us, it is sufficiently close for a reasonable comparison: we report higher
R2 scores.
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Figure 7: Summary of relative feature importance across different pressures for the 1D, 2D topological
features, and baseline features. Combined topological features dominate for low pressures, but as pressure
increases, the baseline features become more important. 2D topology features remain significant even at
higher pressures.

4 Conclusions

We have developed an approach using topology to create a more holistic feature representation for nanoporous
materials than the currently widely used porosity descriptors. Specifically, this representation is a vectorized
persistence diagram obtained from analysis of the normalized supercell representation of the materials’ crystal
structure, that can then be utilized in any machine learning algorithm.

We have tested this approached using a set of roughly 55 thousand zeolite structures and their methane
adsorption isotherms obtained using molecular simulations, which enable us to train random forest regressors
operating on our representations. We have demonstrated that this approach performs better than current
scientific structural features and can accurately predict both adsorption loadings and structures rankings,
highlighting the possibility of its applications in various screening studies.

We also note that the highest performance of statistical models was achieved by combining the new
topology representations with the commonly used porosity descriptors.
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