
Topological Optimization with Big Steps

Arnur Nigmetov Dmitriy Morozov

Lawrence Berkeley National Laboratory

November 19, 2023

Abstract

Using persistent homology to guide optimization has emerged as a novel application of topological data
analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only
onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence
calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that
in a special case, which serves as a building block for general losses, the problem can be solved exactly
in linear time. This relies on another contribution of this paper, which eliminates the need to examine
a factorial number of permutations of simplices with the same value. We present empirical experiments
that show the practical benefits of our algorithm: the number of steps required for the optimization is
reduced by an order of magnitude.

1 Introduction

Topological optimization [18, 26, 10] is a novel application of persistent homology [20]. The basic idea is to
define a loss in terms of the points of a persistence diagram and minimize it using the modern optimization
software that combines automatic differentiation with state-of-the-art optimization techniques. Depending on
the application, we may want to reduce noisy features in the data by moving low-persistence points closer to
the diagonal [26, 25] or outside of a particular quadrant [10], amplify signal by moving high-persistence points
away from the diagonal [7], match a template signal by moving the current diagram towards a prescribed
one [18, 22], among other applications. Most of the work so far has been motivated by problems in machine
learning: a loss formulated via persistence can be used to regularize a decision boundary (following the
philosophy that overfitting produces a topologically complex surface).

Optimization also offers a new approach to an old problem. Given a function f : X → R on some
topological space, persistence-sensitive simplification [16] asks for a nearby function g : X → R, with the
same persistence diagram as f , but without the points closer than ε to the diagonal. The original paper [16]
showed that one can solve the problem for extrema — and therefore, by duality, completely on 2-manifolds
— but the suggested algorithm was ad hoc. The running time was later improved to linear [2, 5], see also [29].
Crucially, the problem has only been solved for extrema, with the difficulty of processing middle dimensions
(e.g., simplifying 1-dimensional persistence for functions on 3-manifolds) highlighted by the connection to
the Poincaré conjecture [24, Section 3.5]: because simplification is impossible for sufficiently large values of
ε on homology spheres, any such scheme must take the topology of the domain into account.

But it is possible to take a “best effort” approach. Instead of solving the problem exactly via combina-
torics, one can formulate a simplification loss that penalizes points closer to the diagonal than ε. Minimizing
such a loss may not produce the perfect solution g, but it can get very close. Moreover, it offers the flexibility
of articulating more sophisticated goals: for example, to not only simplify the function overall, but also to
control the topology of its specific levelsets or sublevel sets.

Approach. We are interested in the general problem, where the loss is formulated as a partial matching.
Some of the points pi in the persistence diagram are prescribed targets qi, and the loss aims to minimize

1



the distance between them, e.g., L =
∑
i(pi − qi)

2. The existing approaches to this optimization are
all based on the same idea. Each point in the diagram is defined by the values of a pair of simplices:
pi = (bi, di) = (f(σi), f(τi)), where f : K → R is the input filtration. The gradient ∂L/∂pi defined by the
loss immediately translates to the gradient on the simplex values, ∂L/∂f(σi) and ∂L/f(τi). These in turn
can be backpropagated through the filtration to define the gradients on the input data.

This approach is general — it can handle arbitrary losses — and comes with theoretical guarantees of
convergence [8]. But it is also slow. Subsampling [28] has been suggested as a way to speed it up. We
instead improve performance by focusing on one of its shortcomings, namely that it treats persistence as a
black box. The only information used comes from the pairing, which means that only critical values of the
input get any gradient information: each point pi gives gradients on only two simplex values. Moreover, if
the optimization is done carefully and multiple simplices get the same value, the above gradient definition is
not even correct: defining it exactly in general requires examining k! different orders of the k simplices with
the same value [22].

At the same time, persistent homology computes a lot more structure than just the pairing represented
in the persistence diagram. The standard algorithms [20, 13] compute cycles and chains in the domain
that certify the existence of a particular pair. We take advantage of this extra information to speed up
optimization by suggesting a principled way for each point to define gradients for a large set of simplex
values.

Our work has four main contributions:
1. We show that for a simple loss, called singleton loss, defined by matching a single point in the persistence

diagram to a target, the gradient can be computed exactly, including when multiple simplices have
the same value, by examining a single permutation, rather than k! required in general. This structural
realization leads to a cubic algorithm to optimize the singleton loss.

2. We show that this algorithm can be improved to linear time by examining matrices computed as a
byproduct of finding the persistence pairing.

3. We introduce a set of heuristics for combining “big steps” prescribed by individual points into a
gradient on both critical and regular simplices, which can be backpropagated and optimized using
standard algorithms and software.

4. We show experimentally that our procedure requires an order of magnitude fewer steps to optimize a
loss than the standard procedure that defines the gradient on only two simplices per persistence pair.

2 Background

We assume the reader’s familiarity with algebraic topology and only briefly review the setting of persistent
homology, to establish the notation. We refer the reader to the extensive resources [14, 15] for a thorough
introduction.

Persistent homology. Given a simplicial complex K, with n simplices, and a function f : K → R that
respects the face relation — i.e., f(σ) ≤ f(τ) if σ is a face of τ — we sort the simplices in K by function
value, breaking ties if necessary so that faces come before their cofaces. We use < to denote the resulting
total order on the simplices. We denote the subcomplexes defined by the prefixes of this order with Ki.
Their nested sequence is called a filtration:

K1 ⊆ K2 ⊆ . . . ⊆ Kn = K.

Using coefficients in a field and passing to homology, we get a sequence of homology groups, connected
by linear maps induced by the inclusions:

H∗(K1)→ H∗(K2)→ . . .→ H∗(Kn).

Persistent homology tracks how classes appear and disappear in this sequence, and produces a set of pairs
(σi, σj) such that a homology class created by simplex σi dies when simplex σj enters the filtration, and a
set of infinite pairs (σi,∞), if a class created by simplex σi does not die.

2



To compute this pairing, we start with the boundary matrices, Dp, of the simplicial complex, whose
columns and rows are ordered by the filtration. Each such matrix stores the boundaries of the p-simplices.1

It will be convenient to use the simplices themselves to index the columns of various matrices, so for example
Dp[·, τ ] refers to the column that stores the boundary of p-simplex τ ; similarly, Dp[σ, ·] refers to the row that
stores the coboundary of (p− 1)-simplex σ.

Persistence pairing is computed by reducing the boundary matrix, which can be interpreted [11] as finding
decompositions Rp = DpVp, where matrices Rp are reduced, meaning the lowest non-zeros in their columns
appear in unique rows, and matrices Vp are invertible upper-triangular. There are many such decompositions
— Algorithm 1 is the original algorithm [20] that finds one of them — but the locations of the lowest non-
zeros in matrices Rp are unique and give the persistence pairing. Denoting by lowRp[·, τ ] the simplex that
corresponds to the row of the lowest non-zero entry in the column, we have a pair (σ, τ) iff lowRp[·, τ ] = σ
and a pair (σ,∞) iff Rp[·, σ] = 0 and there is no column with lowRp[·, τ ] = σ. We call such σ positive or
birth simplices, and such τ negative or death simplices.

As in [11], we denote by Up the inverse of matrix Vp, so that Dp = RpUp. Algorithm 1 shows how to
compute matrices Rp, Vp, Up. The columns of Rp and Vp have a natural interpretation: matrix Rp stores the
cycles that generate the homology classes in the respective subcomplexes. Matrix Vp stores the chains that
turn those cycles into boundaries.

Remark. Columns of matrices Dp and Rp are indexed by the p-simplices; their rows, by the (p−1)-simplices.
Both rows and columns of matrices Vp and Up are indexed by the p-simplices.

Algorithm 1 Lazy reduction of the boundary matrix.

1: Rp = Dp, Vp = I, Up = I for all p
2: for all τj ∈ K (in filtration order) do
3: while Rp[·, τj ] 6= 0 and ∃ τi < τj , lowRp[·, τi] = lowRp[·, τj ] do
4: σ = lowRp[·, τj ]
5: α = Rp[σ, τj ]/Rp[σ, τi]
6: Rp[·, τj ] = Rp[·, τj ]− α ·Rp[·, τi]
7: Vp[·, τj ] = Vp[·, τj ]− α · Vp[·, τi]
8: Up[τi, ·] = Up[τi, ·] + α · Up[τj , ·]
9: (equivalently, Up[τi, τj ] = α)

Matrices Up and Vp obtained via the lazy reduction in Algorithm 1 have a special property that we rely
on below. Throughout the paper — starting from the statement and proof of the following lemma — it is
convenient to simplify the language by assuming that if Rp[·, τ ] = 0, then lowRp[·, τ ] is implicitly equal to
a “dummy” simplex σ̄ that precedes every other simplex in the filtration order.

Lemma 1 (Lazy reduction). If decompositions Rp = DpVp and Dp = RpUp are obtained via the lazy
reduction in Algorithm 1, then if σi = lowRp[·, τi] and σj = lowRp[·, τj ] are such that τi < τj and σi < σj,
then Up[τi, τj ] = Vp[τi, τj ] = 0.

Proof. The proof is by induction. The statement is trivially true initially, when Vp = Up = I. Suppose the
statement is true after l − 1 steps of the reduction. Suppose in step l we are adding a multiple of column
Rp[·, τi] to Rp[·, τj ]. Since the reduction is lazy, it means lowRp[·, τi] = lowRp[·, τj ] before the addition, and
lowRp[·, τj ] < lowRp[·, τi] afterwards. The corresponding operation in matrix Vp adds a multiple of column
Vp[·, τi] to column Vp[·, τj ], so the only non-zero entries that may be introduced into the column Vp[·, τj ] are
those in the column Vp[·, τi]. By induction all of them fall in rows τk with lowRp[·, τk] ≥ lowRp[·, τi] >
lowRp[·, τj ]. Since by the time we are reducing Rp[·, τj ], we have already reduced all the preceding columns
— and therefore their pairs don’t change — the claim follows for matrix Vp.

1Recall that a p-simplex has (p + 1) vertices.

3



In matrix Up, the corresponding operation is adding a multiple of row Up[τj , ·] to row Up[τi, ·]. By
induction any non-zero in the former falls in the columns τk with lowRp[·, τk] ≤ lowRp[·, τj ] < lowRp[·, τi].
Since the already reduced columns in Rp don’t change, the claim follows for matrix Up.

The following two corollaries follow immediately as contrapositive statements of the lemma. In both,
because matrix Rp is reduced, the equality among the lowest entries is achieved iff τi = τj .

Corollary 2. If after a lazy reduction entry U [τi, τj ] 6= 0, then lowRp[·, τj ] ≤ lowRp[·, τi].

Corollary 3. If after a lazy reduction entry V [τi, τj ] 6= 0, then lowRp[·, τj ] ≤ lowRp[·, τi].

Duality. Passing from the filtration to cohomology, a vector space dual of homology, we get a sequence of
cohomology groups, connected by linear maps induced by restrictions:

H∗(K1)← H∗(K2)← . . .← H∗(Kn).

By duality [13], the pairing in this sequence is the same as for homology, but with the role of birth and death
reversed, a fact we exploit below.

Algorithmically, we replace the boundary matrix by its anti-transpose, D⊥p , i.e., a transpose of Dp

with rows and columns ordered in reverse filtration order. Applying Algorithm 1, we get decompositions
R⊥p = D⊥p V

⊥
p and D⊥p = R⊥p U

⊥
p . Similar to homology, the matrices have immediate interpretation: R⊥p

stores the cocycles and V ⊥p the cochains that turn them into coboundaries.

Remark. Matrices R⊥p , V
⊥
p , U

⊥
p are not anti-transposes of matrices Rp, Vp, Up. In D⊥p and R⊥p , rows are

indexed by p-simplices; columns, by (p− 1)-simplices. In V ⊥p and U⊥p , both rows and columns are indexed by
(p− 1)-simplices.

Persistence pairing is the same for homology and cohomology [13]. lowRp[·, τ ] = σ iff lowR⊥p [·, σ] = τ

(simplices σ and τ are paired). Rp−1[·, σ] = 0 and @τ with lowRp[·, τ ] = σ iff R⊥p [·, σ] = 0 and @ρ with

lowR⊥p−1[·, ρ] = σ (simplex σ is unpaired).

Stability. In the combinatorial setting, the following statement is equivalent [11] to the stability of persistent
homology.

Lemma 4. Suppose two simplices σ1 and σ2 that appear consecutively in the filtration transpose. The only
persistence pairs that can change are the two pairs that involve simplices σ1 and σ2.

It follows immediately that re-ordering more than two simplices only affects their respective pairs.

Corollary 5. Given a contiguous set of simplices X in the filtration, changing the order of simplices in X
can change only persistence pairs with one of the endpoints in set X.

3 Singleton Loss

Virtually every topological loss proposed in the literature can be rephrased as a partial matching: some
points in the diagram are prescribed targets, where they need to move. For example, the simplification loss,

Lε(f) =
∑

(b,d)∈Dgm(f)
(d−b)≤ε

(d− b)2 (1)

can be formulated as a partial matching M , where every point (b, d) ∈ Dgm(f) with (d− b) ≤ ε is matched
to the point ((b+ d)/2, (b+ d)/2). Then the loss can be re-written as

Lε(f) =
∑

(p,q)∈M

(p− q)2.

4



We consider the simplest such setting, where the partial matching consists of a single pair, (p, q). We call
this singleton loss. We assume that p = (b, d) = (f(σ), f(τ)) and q = (b′, d′). The loss itself is L = (p− q)2.
We will follow the gradient flow of this loss and keep track of point p. Specifically, we denote by pt the image
of p under gradient flow after time t, and write the loss Lt = (pt − q)2, which defines the gradient at every
point in time. We note that the loss is oblivious to what happens to the other points in the persistence
diagram.

Following the gradient to minimize this loss translates into moving simplices σ and τ in the filtration
to their target values b′ and d′. We first focus on the negative p-simplex τ . Suppose there are m simplices
with values between d and d′, and mp of them are p-simplices. As we increase or decrease the value of τ
(depending on whether d′ > d or d′ < d), it is going to reach the value of each one of the mp p-simplices. For
each such simplex τk, we must determine what happens if we place it before τ , when increasing the value,
or after τ , when decreasing. If doing so changes the pairing of σ to τk, then τk needs to move together with
τ (and enter the critical set Xσ, defined below). If not, we can safely skip over τk (a fact that itself requires
a proof).

It is not immediately obvious, but we prove in the next subsection that when determining the fate of τk,
it is not necessary to consider all k! possible orders of the simplices that are moving together with τ (as one
might reasonably expect in general [22]); determining the pairing for a single order suffices.

Besides moving the simplices of the same dimension as τ , which are the only simplices that may take
over the pairing with σ, we must move all of their cofaces, when increasing the value, or their faces, when
decreasing the value. This is required simply to ensure that our simplex order defines a filtration. We revisit
this topic in Section 3.6.

3.1 Critical Set

As we move a p-simplex τ , paired with a q-simplex σ,2 in the filtration, we maintain a critical set of p-
simplices that move together with τ under the gradient flow of the singleton loss. We say that a set of
p-simplices is contiguous, if their columns are contiguous in matrix Dp.

Definition 6. Given a q-simplex σ, a set of contiguous p-simplices Xσ is critical, if placing any τ ′ ∈ Xσ as
the first simplex (when increasing the value of τ) or as the last simplex (when decreasing the value of τ) in
the set makes it paired with σ.

The critical set is well-defined because whether simplices σ and τ ′ are paired depends only on what
simplices appear between σ and τ ′, not on their order. In other words, re-ordering the simplices in the
critical set Xσ does not change the pairing of the (first or last) simplex in the set that is paired with σ. This
argument implies that when we add a simplex to the critical set, we don’t lose any of the simplices already
in it.

Lemma 7. Suppose Xk−1
σ is a critical set and τk appears immediately before or after the set (depending on

the direction that τ is moving). Suppose that transposing Xk−1
σ and τk changes the pairing of σ to τk. Then

Xk
σ = Xk−1

σ ∪ τk becomes the critical set after the transposition.

A key property of the critical set, expressed in the following lemma, is that it is resilient under transpo-
sitions. If a simplex τ ′ can transpose with the critical set without becoming paired with σ, then the critical
set does not change after the transposition.

Lemma 8. Suppose Xk−1
σ is a critical set and τk appears immediately before or after the set (depending on

the direction that τ is moving). Suppose that transposing Xk−1
σ and τk does not change the pairing of σ.

Then Xk
σ = Xk−1

σ remains critical after the transposition.

Proof. Suppose we are decreasing the value of τ and, therefore, by definition, any simplex in Xk−1
σ , when

placed last, is paired with σ. Let τ ′ be this last simplex in Xk−1
σ in the filtration order. Transpose τk with

2The only possible values of q are (p− 1) or (p + 1).

5



all but the last simplex in the critical set. The last simplex, τ ′, remains paired with σ (by Corollary 5). Now
transpose τk and τ ′. Their pairing doesn’t change, since τ ′ does not become paired with σ by the assumption
of the lemma, and τ ′ remains paired with σ. Since this argument holds for every τ ′ ∈ Xk−1

σ , the critical set
does not change.

The same argument applies when increasing the value of τ by replacing “last” with “first.”

Lemmas 7 and 8 together mean that as we move simplex τ , the critical set can only grow: simplices
enter, but never leave. Lemma 8 suggests Algorithm 2 for changing the value of τ , using transpositions [11]:
for each of the mp p-simplices with values between d and d′, transpose it past the critical set. If its pairing
changes to σ (or if the transposition is impossible because it is a face or a coface of one of the simplices in
the critical set), add it to the critical set. Because each transposition takes linear time [11], the first for-loop
runs in O(m2n) time. The second for-loop can be implemented as a breadth-first search through the graph
of the face–coface relationships (called a Hasse diagram), so it takes O(dm) time, where d is the dimension
of K. Because d < n, the former dominates, and we get O(m2n) running time for the whole algorithm.

Algorithm 2 Moving τ using individual transpositions.

1: X1
σ = {τ}

2: for each p-simplex τk with f(τk) from d to d′ do
3: transpose τk with each simplex in Xk−1

σ ,
4: updating the pairing using the algorithm in [11]
5: if τk becomes paired with σ then
6: Xk

σ = Xk−1
σ ∪ {τk}

7: transpose τk with each simplex in Xk−1
σ ,

8: undoing the transpositions in Line 4,
9: returning it to the opposite end of Xk

σ

10: else
11: Xk

σ = Xk−1
σ

12: for each τ ∈ Xmp
σ do

13: set f(τ) = d′ (ties broken implicitly via the original order)
14: if d′ > d then
15: // move cofaces
16: for each simplex ρ ⊇ τ , and d < f(ρ) < d′ do
17: set f(ρ) = d′

18: else
19: // move faces
20: for each simplex σ ⊆ τ , and d′ < f(σ) < d do
21: set f(σ) = d′

Remark. The transpositions in Line 9 are unnecessary, but they simplify the proofs below.

Our main contribution is an algorithm for identifying the entire critical set in O(m) time, without having
to perform the transpositions. The resulting effect is illustrated in Figure 1, where the gradient flow implicitly
traced by Algorithm 2 follows the brown curve. By identifying the critical set, we can move directly to the
final destination — taking a “big step” — as illustrated with the blue curve.

3.2 Increase Death

Suppose we are trying to increase the value of τ , paired with σ, from d to d′. And suppose decomposition
Dp = RpUp is obtained using a lazy reduction. Then it suffices to examine the row Up[τ, ·] to identify the

6



τ2 = 1/4

τ3 = 3/4

(1, 1/4, 1)

(0, 1/4, 3/4) (1/4, 1/4, 3/4)

(3/4, 1/4, 3/4)

τ1

τ2

τ3

Figure 1: Three simplices, τ1, τ2, τ3 have initial values (0, 1/4, 3/4). Our goal is to increase the value of τ1 to 1,
and we assume that its critical set includes simplex τ3, but not τ2. The final simplex values are (1, 1/4, 1). The
path taken by the gradient flow is shown in brown. The big step that our algorithm identifies, in blue.

Dp

= ·

Rp Up

τ τk. . . τ τk. . . τ τk. . .
τ

τk

...

?

Figure 2: Subset of the matrices Dp = RpUp involved in the proof of Theorem 9.

simplices that must move together with τ . Specifically,

Xσ =

{
τi

∣∣∣∣ d ≤ f(τi) ≤ d′,
Up[τ, τi] 6= 0

}
(2)

is the final critical set that we would accumulate under the gradient flow. In other words, it suffices to move
simplices in Xσ — and their cofaces — directly by setting f(τi) = d′.

Theorem 9. The critical set Xσ defined in Equation (2) is the set of simplices accumulated by Algorithm 2,
when increasing the value of a negative simplex τ .

Proof. Suppose there are mp p-simplices with d ≤ f(τi) ≤ d′. Denote the first k of them with Yk. We prove
the claim by induction. Restrict the set Xσ from Equation (2) to the set

Xk
σ = Xσ ∩ Yk. (3)

We claim that this set is the same as its namesake in Algorithm 2.
The statement is trivially true for the base case: X1

σ = {τ}.
Consider the steps taken by Algorithm 2. Suppose the claim is true after k − 1 steps. By induction, all

simplices τi in Xk−1
σ have Up[τ, τi] 6= 0. Since the reduction is lazy, Corollary 2 implies σi = lowRp[·, τi] ≤ σ.

At step k, we decide whether simplex τk needs to be added to the critical set.
Consider the subset of the Dp = RpUp decomposition, restricted to the critical set and τk, i.e., simplices

in the range τ . . . τk; see Figure 2. We can zero out the column Up[·, τk] in this range using row operations in

7



matrix Up, adding multiples of row Up[τk, ·] to the rows Up[τi, ·] above it. The corresponding operations in
matrix Rp, which maintain the decomposition, subtract multiples of columns Rp[·, τi] from column Rp[·, τk].
Denote the former by matrix W and the latter by W−1. We have Dp = (Rp ·W−1) · (W · Up) = R′pU

′
p.

Once column U ′p[·, τk] is zeroed out, we can transpose τk with the critical set Xk−1
σ . The columns of the

critical set may need to be reduced further, but the column R′p[·, τk] is already reduced, and therefore we
can infer the pairing of τk after the transposition.

Denote by σk = lowRp[·, τk], the pair of τk before the transposition. If σk > σ, then it remains so after
the transposition: by the inductive hypothesis σi = lowRp[·, τi] ≤ σ for all τi ∈ Xk−1

σ , and therefore adding
these columns to Rp[·, τk] doesn’t change its lowest non-zero. We note that because the reduction is lazy, in
this case Up[τ, τk] = 0 by Lemma 1.

If σk < σ, then we need to examine Up[τ, τk]. If it is zero, then after the transposition σ′k = lowR′p[·, τk]
remains less than σ, and therefore τk does not become paired with σ. If Up[τ, τk] 6= 0, then σ = lowR′p[·, τk]
and τk enters the critical set.

To summarize, τk enters the critical set Xk
σ if and only if Up[τ, τi] 6= 0. In other words, Xk

σ in Equation (3)
and in Algorithm 2 are the same.

It is crucial to our argument that if τk does not enter the critical set, and therefore moves past it, that
Up[τ, τk] = 0. Because of this property, the row Up[τ, ·] does not change via matrix updates in the induction,
and therefore the entries that we encounter in the row at any step are the same.

3.3 Decrease Death

Suppose we are trying to decrease the value of simplex τ from d to d′. And suppose decomposition Rp = DpVp
is obtained using a lazy reduction. Then it suffices to examine the column Vp[·, τ ]. Specifically,

Xσ =

{
τi

∣∣∣∣ d′ ≤ f(τi) ≤ d,
Vp[τi, τ ] 6= 0

}
(4)

is the final critical set that we would accumulate under the gradient flow. In other words, it suffices to move
simplices in Xσ — and their faces — directly by setting f(τi) = d′.

Theorem 10. The critical set Xσ defined in Equation (4) is the set of simplices accumulated by Algorithm 2,
when decreasing the value of a negative simplex τ .

Proof. Suppose there are m simplices with d′ ≤ f(τi) ≤ d. Denote the last k of them with Yk. We prove the
claim by induction. Restrict the set Xσ from Equation (4) to the set

Xk
σ = Xσ ∩ Yk. (5)

We claim that this set is the same as its namesake in Algorithm 2.
The statement is trivially true for the base case: X1

σ = {τ}.
Consider the steps taken by Algorithm 2. Suppose the claim is true after k − 1 steps. By induction, all

simplices τi in Xk−1
σ have Vp[τi, τ ] 6= 0. Since the reduction is lazy, Corollary 3 implies σi = lowRp[·, τi] ≥ σ.

At step k, we decide whether simplex τk needs to be added to the critical set.
Consider the subset of the Rp = DpVp decomposition, restricted to the τk and the critical set, i.e.,

simplices in the range τk . . . τ ; see Figure 3. Suppose we transpose τk with all the simplices in the critical
set Xk−1

σ , except for the last simplex τ . Denote the updated matrices R′p and V ′p . By Corollary 5, the
pairing may change only among the transposed simplices. In particular, columns R′p[·, τ ] = Rp[·, τ ] and
V ′p [·, τ ] = Vp[·, τ ] do not change.

If Vp[τk, τ ] = 0, then we can transpose τ and τk without changing the pairing. In particular, τ remains
paired with σ. If Vp[τk, τ ] 6= 0, then from the contrapositive of Lemma 1, before the transposition σk =
lowRp[·, τk] > σ. From the inductive assumption (that together with Lemma 1 implies that for all τi ∈
Xk−1
σ − {τ}, their pairs σi > σ) and from Corollary 5, after transposing τk to just before τ , its pair

8



Rp

= ·

Dp Vp

τk τ. . . τk τ. . . τk τ. . .
τk

τ

...

?

Figure 3: Subset of the matrices Rp = DpVp involved in the proof of Theorem 10.

σ′k = lowR′p[·, τk] > σ. To perform the final transposition, we need to zero out V ′p [τk, τ ], which adds a
multiple of column R′p[·, τk] to R′p[·, τ ]. After the transposition, we undo the operation in the column of τk,
which becomes

Rp[·, τk]− (1/α) · (Rp[·, τ ]− α ·Rp[·, τk]) = −(1/α) ·Rp[·, τ ]

where α = Vp[τk, τ ]. It follows that τk becomes paired with σ and therefore enters the critical set.
To summarize, τk enters the critical set Xk

σ if and only if Vp[τk, τ ] 6= 0. In other words, Xk
σ in Equation (5)

and in Algorithm 2 are the same.
It is crucial to our argument that if τk does not enter the critical set, and therefore moves past it, that

Vp[τk, τ ] = 0. Because of this property, column Vp[·, τ ] does not change via matrix updates in the induction,
and therefore the entries that we encounter in the column at any step are the same. This property, guaranteed
by the use of the lazy reduction, is used in the proof via Lemma 1.

Remark. The proof of Theorem 10 carries through word-for-word if τ is a positive unpaired simplex. This
makes it possible to decrease the birth value of points at infinity by examining the respective column in matrix
Vp. Notably, the argument breaks if simplex τ is positive and paired. In this case the updates of the rows in
matrix Rp complicate the transpositions. It is not difficult to construct examples of the latter, where it is not
enough to examine the columns of matrix Vp.

3.4 Increase or Decrease Birth

Thanks to duality, we are done. Increasing and decreasing death in the previous subsection really means
moving p-simplex τ , with non-zero Rp[·, τ ], either to the left or to the right in the filtration and matrices
Dp, Rp, Vp, and Up. In the dual matrices D⊥p , R

⊥
p , V

⊥
p , and U⊥p , a simplex σ, with non-zero R⊥p [·, σ] is a birth

simplex in a finite pair (σ, τ). Moving it to the left in the anti-transposed matrices, whose rows and columns
are ordered in the reverse filtration order, translates to increasing its value in the filtration. Moving the
simplex to the right, to decreasing its value.

As a result we get the following two theorems by substituting the dual matrices into the proofs of
Theorems 9 and 10.

Theorem 11. Critical set

Xτ =

{
σi

∣∣∣∣ d ≤ f(σi) ≤ d′,
V ⊥p [σi, σ] 6= 0

}
is the set of simplices accumulated by Algorithm 2, when increasing the value of a positive (p− 1)-simplex σ
paired with τ .

Theorem 12. Critical set

Xτ =

{
σi

∣∣∣∣ d′ ≤ f(σi) ≤ d,
U⊥p [σ, σi] 6= 0

}
is the set of simplices accumulated by Algorithm 2, when decreasing the value of a positive (p− 1)-simplex σ
paired with τ .

9



Table 1: Summary of operations and their respective rows and columns for (p − 1)-dimensional σ and p-
dimensional τ .

Operation Row/column Extra

Increase birth (σ) in (σ, τ) V ⊥p [·, σ] cofaces
Decrease birth (σ) in (σ, τ) U⊥p [σ, ·] faces
Increase death (τ) in (σ, τ) Up [τ, ·] cofaces
Decrease death (τ) in (σ, τ) Vp [·, τ ] faces

Increase birth (σ) in (σ,∞) V ⊥p [·, σ] cofaces
Decrease birth (σ) in (σ,∞) Vp [·, σ] faces

σ τ

σ′ τ

σ τ ′

σ′ τ ′
σ ↔ σ′

τ ↔ τ ′

switch

no switch

n
o
sw

itchsw
it
ch σ′σ′

σσ

τ ′τ ′

τ ′τ ′

ττ

ττ

σ′σ′

σσ

Figure 4: Top-left: simplices σ and τ are paired with each other and define the respective critical sets. σ′ ∈ Xτ
and τ ′ ∈ Xσ are contiguous with σ and τ (they come before if we are decreasing the respective value, and after,
if we are increasing it). The assumption that simplices σ′ and τ ′ are in critical sets implies that as we transpose
them with σ and τ , there is a switch in the pairing (top row and left column). If after both transpositions, σ′

and τ ′ are not paired with each other (gray dotted line in the bottom-right), then no pairing switches during
the second transposition. This determines the pairing between the four simplices: σ is paired with τ ′ and σ′ is
paired with τ .

Remark. The remark at the end of the previous subsection about examining the column Vp[·, σ] to decrease
the value of an unpaired simplex σ translates to examining the column V ⊥p [·, σ] to increase its value.

Table 1 summarizes which matrices participate in each case.

3.5 Consistency of Critical Sets

Lemmas 7 and 8 imply that individual critical sets are well-defined: as we add simplices to a critical set
during optimization, it can never lose a simplex. But what happens when we change birth and death
simultaneously? In this case, we have to settle for an additional assumption, namely that point p defining
the singleton loss has multiplicity one.

Theorem 13. If p = (f(σ), f(τ)) has multiplicity one, then Xτ and Xσ don’t change under permutation,
i.e., for every τ ′ ∈ Xσ, if we swap it with τ , then its critical set Xτ ′ = Xτ , and for every σ′ ∈ Xτ , if we
swap it with σ, then its critical set Xσ′ = Xσ.

Proof. Consider arbitrary simplices τ ′ in Xσ and σ′ in Xτ . By Definition 6, if τ and τ ′ are swapped in the
filtration, then σ is paired with τ ′. Similarly, if σ and σ′ are swapped, then σ′ is paired with τ . Without loss
of generality, we can assume that both pairs of simplices — σ and σ′ as well as τ and τ ′ — are contiguous in
the filtration. Then the two swaps above are transpositions of contiguous simplices. The assumptions about
σ′ ∈ Xτ and τ ′ ∈ Xσ imply that either transposition (top and left in Figure 4) leads to a switch in pairing.
If after transpositions of both pairs, σ′ and τ ′ are not paired with each other (lower-right part of Figure 4),
then no switch in pairing occurs during the second of the two transpositions. This necessarily implies that σ′

is paired with τ and σ is paired with τ ′. In other words, there are two persistence pairs between the critical
sets, meaning point p = (f(σ), f(τ)) in the diagram has multiplicity greater than one.

10



Remark. The theorem applies to every critical set during the optimization. The point defining singleton
loss may start out having multiplicity one, but gain higher multiplicity as the critical sets grow.

3.6 Faces and Cofaces

After identifying the critical set Xσ, we need to move all the cofaces (when increasing) or faces (when decreas-
ing) of every simplex in the set, to ensure that the new simplex values define a filtration. In Algorithm 2, the
for-loop in Lines 12 to 21 performs the required update. For a general filtration, we simply execute the same
for-loop, which takes O(dm) time. Because we can identify the critical set in O(m) time, finding the faces
and cofaces dominates the running time. However, since d is a small constant in all practical applications,
linearity in m is most important.

In practice, an explicit update of faces and cofaces is unnecessary. The function f : K → R that defines
the filtration is derived from the input data. The gradients on the simplices are backpropagated through
f to the input values, which are updated by the optimization. When an updated function f ′ : K → R is
derived from the updated data, it satisfies the face condition and defines a filtration by construction.

For example, consider a lower-star filtration (which we use to compute persistence of scalar fields in all

our experiments in the next section): given a function, f̂ : VertK → R, on the vertices of the simplicial

complex, we extend it to all the simplices, f(σ) = max{f̂(v) | v ∈ σ}. When we get a gradient ∂L/∂f(σ),

which we backpropagate to ∂L/∂f̂(v), where v = arg maxv′∈σ f̂(v′). After taking a step, following this

gradient, we get a new function on the vertices f̂ ′. Because the new filtration is constructed as a lower-star
filtration of this function, we are guaranteed that all the faces precede σ and all of its cofaces come after.
The same argument applies to the Vietoris–Rips filtration, Čech filtration, alpha filtration, etc. In all such
cases, the O(dm) term is eliminated from the running time, leaving only O(m).

We note that it may still be worthwhile to compute and move the faces or cofaces explicitly. The O(dm)
overhead is minor, but more gradient information gets propagated to the input data.

3.7 Combined Loss

Given a general loss, L =
∑

(p,q)∈M (p − q)2, defined by an arbitrary matching M , typically recomputed
after every step of the optimization, we can compute the target values for each simplex prescribed by the
singleton losses defined by the individual terms of the sum. For a simplex σ, with the initial value f(σ) = a,
we get a set of target values {a1, a2, . . .}, one for each singleton loss. (If a singleton loss doesn’t prescribe a
value to a simplex, then the corresponding value ai is missing from the target set, which can be empty as
a result.) Ultimately, we want to define a gradient on the individual simplices that would allow us to take
(small) optimization steps, but to do so we need to decide on one target value for each simplex.

There are several ways to combine the target values into one. We choose to set

a′ = ai, where i = arg max
j
{|a− aj |}

as the target value for σ, i.e., moving it as far as possible in the filtration. (Two other strategies are considered
in Appendix B.) This is a heuristic, without a strong justification, but with the following reasoning behind
it. When all simplices of a given dimension are moving in the same direction (e.g., all 1-simplices increase
and all 2-simplices decrease their values), most simplices get prescribed values ai that are lower bounds on
how far they need to move to solve the singleton loss. Put another way, all but the first or the last simplex
in the critical set can move farther than their stated target. So taking the maximum is a way to satisfy all
lower bounds simultaneously. Another reason for the maximum is that for the simplification loss Lε, defined
in Equation (1) at the beginning of Section 3, when applied to diagrams of dimension 0 or codimension 1,
maximum gives the optimal solution in one step. Intuitively, the reason is that when multiple values are
prescribed to the same simplex, it means that it belongs to multiple nested topological features. (A formal
proof of this claim requires a lot of new machinery, which is why we omit it. The claim is only a minor
motivation for our heuristic choice.)

Algorithm 3 summarizes our overall method.

11



Algorithm 3 Critical set method.

1: Input: L =
∑

(pi,qi)∈M (pi − qi)2
2: for each (pi, qi) ∈M do
3: let pi = (bi, di) = (f(σi), f(τi)); qi = (b′i, d

′
i)

4: Xb =

{
σj

∣∣∣∣ V ⊥[σj , σi] 6= 0 and bi ≤ f(σj) ≤ b′i; or
U⊥[σi, σj ] 6= 0 and b′i ≤ f(σj) ≤ bi

}
5: Xd =

{
τj

∣∣∣∣ U [τi, τj ] 6= 0 and di ≤ f(τj) ≤ d′i; or
V [τj , τi] 6= 0 and d′i ≤ f(τj) ≤ di

}
6: // omitted: find faces/cofaces if necessary
7: for σj ∈ Xb do
8: append b′i to target[σj ]

9: for τj ∈ Xd do
10: append d′i to target[τj ]

11: for each σ do
12: if target[σ] is empty then
13: f ′(σ) = f(σ)
14: else
15: j = arg maxj {|f(σ)− target[σ][j]|}
16: f ′(σ) = target[σ][j]

return ∀σ, ∂L/∂f(σ) = 2(f(σ)− f ′(σ))

Remark. In practice, one typically uses an automatic differentiation library. Instead of computing the
gradients explicitly, as in Algorithm 3, one computes the corresponding loss L =

∑
(f(σ)−f ′(σ))2, where the

summation is over all simplices σ with non-empty target[σ]. Value f(σ) must be automatically differentiable
and f ′(σ) is a constant. Backpropagation takes care of evaluating ∇L with respect to f(σ) and any variables
on which f(σ) depends.

Decreasing loss. In general, the heuristic of taking the maximum displacement as the target value is not
guaranteed to decrease the loss locally. For such a guarantee, we need to assume that all the simplex values
are distinct and take a sufficiently small step in any direction whose individual components have the same
sign as the negative of the gradient of the loss. (The components on which the gradient of the loss is zero
can have any sign.) This follows from the loss being additive: each individual term (pi − qi)2 decreases if
the coordinates of pi are brought closer to qi.

If one wanted to ensure that the loss decreases locally, it is easy to enforce this condition explicitly by
fixing the gradient values of the critical simplices to be the same as the gradient given by the loss. This
results in an alternative heuristic for combining singleton losses. We present one such example under the
name fca in Appendix B.

Another setting where the loss is guaranteed to decrease using Algorithm 3 directly is if all points in
the persistence diagram are prescribed the same kind of movement, i.e., their birth and death values either
increase or decrease in tandem.

4 Experiments

In this section, we compare optimization that computes gradients by identifying critical sets of singleton
losses, as explained in the previous section, to the existing approach in the literature that defines the gradients
on the pairs of simplices that define the persistence pairing, as explained in the Introduction. Below, in figure
legends, we refer to our new method as “Critical set” and to the previous method as “Diagram.”

Vineyards. In all our experiments we get a series of diagrams Dt indexed by the optimization step. We
visualize two of their projections to understand their evolution.

12



Figure 5: Vineyard of the optimization guided by the simplification of a sublevel set in a 0-dimensional diagram
of the magnetic reconnection dataset, using the diagram method. Learning rate is 0.2, without momentum.
The color encodes the time step. The left projection makes it clear that many of the points do not reach the
quadrant boundary after 50 steps.

Data. We use two scientific datasets from the “Open Scientific Visualization Datasets” collection [21].
• Rotstrat [27]: temperature field of a numerical simulation of rotating stratified turbulence.
• Magnetic reconnection [19]: a single time step from a computational simulation of magnetic reconnec-

tion. This dataset has a visible geometric structure that looks like a curved tunnel in the middle.
We downsampled the data (still keeping it larger than most data sets used for topological optimization in
the literature). All our experiments are done on datasets of size 323.

We use upper- or lower-star filtrations, described in Section 3.6, to compute persistence of the data.
Because both use max or min to assign values to the simplices, we apply the same maximum displacement
construction as in Section 3.7 to the vertices: if the same vertex is prescribed different gradients by different
simplices, we keep the one that results in the largest displacement.

4.1 Sublevel Set Simplification

This experiment is motivated by the simplification of the decision boundary of a neural network [10], for-
mulated as a level set. The authors phrase their loss in terms of well groups [17, 6]. For simplicity (to avoid
having to introduce new constructions), we do not simplify the level set, but rather a sublevel set. Given a
function f : X→ R, denote with Xa = f−1(∞, a] its sublevel set. A topological feature exists in this sublevel
set, if its birth value is less than a and its death value is greater than a. Geometrically, we want to eliminate
the points of the persistence diagram that lie in the quadrant defined by b ≤ a and d ≥ a. We match each
such point (bi, di) to the closest point on the boundary of the quadrant, i.e., either (bi, a) or (a, di).

We ran this experiment for the magnetic reconnection dataset. The threshold was chosen in such a way
that the quadrant contains a large portion of the points.

Figures 5 and 6 present the vineyards of the two optimization procedures. The color of the point encodes
the step number, in both projections. The blue lines show the quadrant that we want to make free of the
diagram points.

Because topological features are intertwined in complicated ways, it is impossible to move only the points
in the quadrant. The points outside of the quadrant are moving too, and some of the points in the quadrant
are not moving directly to their prescribed target. This is expected in both cases. What is notable is that
using our critical set method, the points move much more efficiently: after 50 steps, all points end up on the
boundary of the quadrant, when using the critical set method, but many do not reach the boundary, when
using the diagram method.

To better compare the two optimization methods, we plot the value of the diagram loss at each step of

13



Figure 6: Vineyard of the optimization guided by the simplification of a sublevel set in a 0-dimensional diagram
of the magnetic reconnection dataset, using the critical set method. Learning rate is 0.2, without momentum.
The color encodes the time step. The left projection makes it clear that all the points rapidly reach the quadrant
boundary.

Figure 7: Comparison of the diagram losses during the optimization using the two methods. Diagram method
greatly benefits from momentum. Critical set also benefits from momentum, but performs well even without it.

14



Figure 8: Vineyard of the optimization guided by the simplification loss in a 1-dimensional diagram of the
Rotstrat dataset, using the diagram method. The color encodes the time step. ε =∞, learning rate 0.2, with
momentum γ = 0.9. The plot makes it clear that the points don’t reach their targets after 50 steps.

the optimization in Figure 7. We used three optimization variants: standard gradient descent and gradient
descent with momentum, with damping parameter γ = 0.5, 0.9. The smaller value of γ makes the influence
of the gradient from the previous steps weaker. Unsurprisingly, momentum makes a big difference for the
diagram method: since it needs to move large portions of the domain, but it has gradient information only
on the critical simplices, the ability to keep moving simplices for several steps is crucial. Our method also
benefits from momentum, but less so, and it performs well with a lower value of the damping parameter,
γ = 0.5. The diagram method works best with the higher γ = 0.9, but even with this value it is not nearly
as fast the critical set method, which rapidly drops to 0 with or without momentum.

4.2 Persistence-sensitive Simplification

Simplification loss was defined in Equation (1) at the beginning of Section 3: it matches all the points with
persistence below a prescribed threshold ε to the diagonal.

We simplify the 1-dimensional diagrams, which is the case inaccessible to the existing combinatorial
methods. The advantage of the critical set method is evident from the vineyards shown in Figures 8 and 9.
The diagram method produces long trajectories of points moving towards the diagonal. The critical set
method moves the points much faster, which is especially clear when comparing the right projections in the
two figures.

The diagram loss plots are in Figure 10. The y-axis is logarithmic, which emphasizes the advantage of the
momentum damping parameter of γ = 0.5 for the critical set method. Somewhat unexpectedly, a high value
of momentum parameter (γ = 0.9) almost completely wipes out the advantage of the critical set method.
For the diagram method, the momentum serves as a surrogate for the critical set: it helps to further push
the points, which stopped being critical after one step.

4.3 Timing and Convergence Rate

The major downside of our method is that it requires considerably more computation per step. We must
compute not only the reduced boundary matrix R, needed to read off the persistence diagram, but also
matrices U and V . Moreover, since we use both homology and cohomology, we have to do this computation
twice.

For example, for magnetic reconnection dataset it takes 3.4× longer to compute matrices U and V than
matrix R by itself. To compute all four matrices U, V, U⊥, and V ⊥ takes 4.2× longer than just matrix R.
Because it requires an order of magnitude fewer steps — and the fraction gets smaller as the data gets larger,

15



Figure 9: Vineyard of the optimization guided by the simplification loss in a 1-dimensional diagram of the
Rotstrat dataset, using the critical set method. The color encodes the time step. ε = ∞, learning rate 0.2,
without momentum. The points approach the diagonal much faster than in Figure 8.

Figure 10: Comparison of the diagram losses during optimization of the simplification loss on Rotstrat dataset.
Diagram methods benefits from momentum. So does critical set (for γ = 0.5), but it performs much better than
the diagram method, even without it.

16



Figure 11: Comparison of the number of steps required to bring diagram loss from 7.2 to 0.001, using simplifi-
cation loss on the 1-dimensional diagram of the Rotstrat dataset. ε =∞.

see Appendix C — our method is still faster overall, but the result seems discouraging: much of the savings
suggested by the rapidly decreasing losses are lost because of the more expensive per-step computation.
We point out a possible solution in the conclusion, but meanwhile note that some flexibility exists in the
formulation of the loss itself. For example, for the simplification loss, as we defined it, we move every points
(b, d) to ((b+ d)/2, (b+ d)/2), which requires both to increase birth and decrease death. As summarized in
Table 1, the former requires computing matrix V ⊥; the latter, matrix V . But we could also simplify the
diagram by moving each point to the point (b, b) on the diagonal. This would require only decreasing the
death values, and thus obviate the need to compute cohomology.

Learning rate and momentum. To study the effect of the learning rate and momentum, we simplify
the Rotstrat dataset diagram in dimension 1 for different values of the hyper-parameters. For ε = ∞, the
original value of the diagram loss is 7.2. For different values of the learning rate, we record the number of
steps needed to minimize it below 0.001 using the two methods. The results are in Figure 11.

Without momentum, the critical set method has a prominent advantage for all learning rates; it requires
22− 25× fewer steps. With momentum, the diagram methods performs better. However, for large learning
rates the performance of the best value of γ = 0.9 becomes worse: the corresponding purple line shoots up.
No choice of the hyper-parameters is a clear winner, but if we pick the two that behave most reasonably —
γ = 0.5 for the diagram method, and no momentum for the critical set method — we see about 11× fewer
steps for the latter.

Taking into account the computational overhead, we conclude that the overall running time of our
approach is normally not worse than the diagram loss optimization, and for larger learning rates it is
consistently better.

5 Conclusion

We have presented a method to accelerate optimization guided by a topological loss, formulated as a match-
ing. The method relies on examining the cycles, chains, and related information calculated as a by-product of

17



persistence computation. We have shown empirically that our method reduces the number of steps required
to achieve a given loss by an order of magnitude.

Warm starts. The timing results seem discouraging: a 10× reduction in the number of optimization
steps, combined with a 4× slow-down per step caused by the computation of matrices V,U and V ⊥, U⊥

results in a very modest speed-up. The fact that cohomology is not always needed provides little solace.
This may seem fatal to our approach, but the recent work of Luo and Nelson [23] offers hope. Motivated
by optimization, among other problems, they present a simple algorithm to quickly compute persistence
pairing, given a reduction of a nearby filtration. They show that such “warm starts” significantly improve
the computation speed, compared to recomputing the pairing from scratch. Crucially for us, their algorithm
relies on computing the R = DV decomposition. In other words, following their method, there is no extra
penalty for computing matrix V , when iteratively updating persistence pairing. Working out the technical
details of such a combined approach is one the most productive directions for future work.

Clearing optimization. Modern state-of-the-art implementations of persistence [3, 4], use clearing opti-
mization [9], which identifies zero columns of matrix R, corresponding to the births of finite pairs, without
reducing them explicitly. Such columns are not needed when we move points closer to the diagonal — in-
creasing birth or decreasing death — but the absence of the corresponding operations in matrix U presents
a problem, when we want to increase death or decrease birth. Although few of the losses proposed in the
literature need such operations, working out a complete method for combining our construction with the
clearing optimization is another worthwhile direction for future work.

Combined losses. Given a matching, we combine multiple singleton losses by taking the maximum dis-
placement prescribed to individual simplices. This is a heuristic, without a strong justification, other than
what’s stated in Section 3.7. There are other natural heuristics: for example, sending each simplex to the
average of its target values. We discuss two of them in Appendix B. Better understanding the resulting
dynamics and finding principled ways to combine multiple singleton losses is the main theoretical question
left open by our work.

In Appendix D, we compare the performance of the diagram and critical set methods on an optimization
problem from [26] that back-propagates the loss past simplex values to a functional correspondence, which
serves as the parameter for optimization.

Convergence guarantees. Another major direction for future work is understanding convergence guaran-
tees of the critical set method. Carrière et al. [8] show that persistence-based losses satisfy the assumptions
required by the work of Davis et al. [12], and therefore their results on the convergence of sub-gradient descent
apply. Unfortunately, the gradient prescribed by the critical set method does not lie in the sub-gradient of
the loss. Its entire point is to provide information on the non-critical simplices, on which the sub-gradient
of the original loss is necessarily zero.

Momentum and optimization. A striking result of our experiments is that momentum often hurts
critical set method, while it almost always helps the diagram method. Our general intuition is that applied
to the diagram method momentum accumulates something like the critical set over the iterations of the
optimization. With the critical set method, the right collection of simplices is identified by the algorithm
itself and so bringing information from prior iterations just obstructs progress. Understanding the interaction
of the critical set method with momentum, and optimization more broadly, is another important research
topic.

Experiments with other optimizers, namely RMSProp and Adam in Appendix A, reinforce that the
interaction of momentum and the critical set method is complicated and deserves future research.

Data Availability Statement

The datasets analyzed are available in the ‘Open Scientific Visualization Datasets’ repository by P. Klacansky,
klacansky.com/open-scivis-datasets.

18

https://klacansky.com/open-scivis-datasets


Figure 12: Simplification results for RMSProp on Rotstrat dataset.

Acknowledgments

This work was initiated under Laboratory Directed Research and Development (LDRD) funding from Berke-
ley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. It has since been supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (Sci-
DAC) program and Mathematical Multifaceted Integrated Capability Centers (MMICCs) program, under
Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

Appendices

A Different optimizers

We also tried Adam and RMSProp optimizers. The results for RMSProp are shown in Figure 12. While there
are some parameters which make direct diagram loss optimization better than the critical set method, the
best results are still achieved when using the critical set. The results for Adam in Figure 13 also demonstrate
the efficiency of the critical set method.

B Other conflict strategies

We say that simplex σ is in conflict, if it belongs to multiple critical sets prescribed by the matching. There
are different ways to resolve such conflicts. In Section 3.7, we chose to take vk that maximizes |f(σ) − vi|,
i.e., of all the values we take the farthest from the current one. We abbreviate this choice as max. Averaging
is another natural choice: if σ appears in the critical sets Xσ1

, . . . , Xσk
, prescribing values v1, . . . , vk, then

we assign 1
k

∑k
i=1 vk as target value of σ. We abbreviate this choice as avg.

Another option is to take the average everywhere except the critical simplices. Specifically, if σ = σj is a
simplex responsible for a point that appears in the matching, then we assign vj as the target value. Otherwise
we take the average. We abbreviate this method as fca (Fix Critical simplices and take Average on others);
its pseudocode is in Algorithm 4. This strategy imitates the gradient of the matching loss L. Specifically,
fca guarantees that for every critical simplex σj whose point in the persistence diagram appears in the
matching, ∂L

∂σj
and the j-th component of our gradient are the same. If we assume general position, then the

gradient of the diagram loss is 0 in all other components (infinitesimal perturbation of other simplices does

19



Figure 13: Simplification results for Adam on Rotstrat dataset. The parameters β1 = 0.9 and β2 = 0.99 are the
default ones in PyTorch.

Figure 14: Comparison of different ways to combine singleton losses during optimization of the simplification
loss on Rotstrat dataset, no momentum.

not change L). In such general position, the loss L is guaranteed to decrease in the direction prescribed by
the fca method, since the loss ignores values of non-critical simplices.

We ran the Rotstrat example (simplification of 1-dimensional diagram) with the same parameters as in
Figure 10, varying the conflict strategy. Figures 14 and 15 show that there is little difference between the
three choices. If γ is small, then taking the maximum performs best. For γ = 0.9, taking the average is
slightly better, see Figure 16. In all cases, the critical set method clearly outperforms naive optimization of
the diagram loss.

C Scaling experiments

Our method aims to move together all the simplices whose critical values must be modified, while the diagram
method touches only the critical simplices. Thus it is reasonable to expect our method to perform better
on larger inputs. Suppose we want to simplify the diagram, and we have a version of the same scalar field
in different resolutions. For higher resolutions, there will be more elements in the critical set of each point,
while the diagram loss identifies only one of these elements at each step.

We took the Rotstrat example and downsampled it to 3 different sizes, 323, 643 and 1283. Then we ran

20



Algorithm 4 Fix Critical, Average on others.

1: Input: L =
∑

(pi,qi)∈M (pi − qi)2
2: for each (pi, qi) ∈M do
3: let pi = (bi, di) = (f(σi), f(τi)); qi = (b′i, d

′
i)

4: Xb =

{
σj

∣∣∣∣ V ⊥[σj , σi] 6= 0 and bi ≤ f(σj) ≤ b′i; or
U⊥[σi, σj ] 6= 0 and b′i ≤ f(σj) ≤ bi

}
5: Xd =

{
τj

∣∣∣∣ U [τi, τj ] 6= 0 and di ≤ f(τj) ≤ d′i; or
V [τj , τi] 6= 0 and d′i ≤ f(τj) ≤ di

}
6: // omitted: find faces/cofaces if necessary
7: for σj ∈ Xb do
8: append b′i to target[σj ]

9: for τj ∈ Xd do
10: append d′i to target[τj ]

11: for each σ do
12: if target[σ] is empty then
13: f ′(σ) = f(σ)
14: else if σ = σi for some i (which is unique) then
15: f ′(σ) = b′i
16: else if σ = τi for some i (which is unique) then
17: f ′(σ) = d′i
18: else
19: f ′(σ) = average of target[σ]

return ∀σ, ∂L/∂f(σ) = 2(f(σ)− f ′(σ))

Figure 15: Comparison of different ways to combine singleton losses during optimization of the simplification
loss on Rotstrat dataset, with momentum 0.5.

21



Figure 16: Comparison of different ways to combine singleton losses during optimization of the simplification
loss on Rotstrat dataset, with momentum 0.9.

Figure 17: Comparison of the diagram losses during the optimization using the two methods on the inputs of
different size. The advantage of the critical set method becomes clearer for larger inputs. There is no momentum.
Learning rate is 0.1

the well group simplification of 1-dimensional diagram with the same parameters. The plots of the losses
are in Figures 17 and 18. Figure 18 in particular shows that even when we use momentum with the diagram
loss, the critical set method drives the diagram loss to zero significantly faster for larger inputs. We also plot
the ratio of the diagram loss values in Figure 19. From this figure, we see that by step 50, the diagram loss
for the 323 input was roughly 104 times smaller when optimized with the critical set method; for the 1283

input it was 109 times smaller.

D Experiments with Heat Kernel Signature

We replicate some of the experiments from [26], both directly optimizing the values on a mesh and back-
propagating to optimize a functional correspondence between two meshes.

Direct optimization. We performed an experiment similar to [26]. We picked a mesh from the SCAPE
dataset [1] and computed HKS signature on it, using [30]. We chose t = 0.2 and 40 eigenvectors. Then we
performed topological simplification, choosing ε to preserve the three most persistent points in the zeroth

22



Figure 18: Comparison of the diagram losses during the optimization using the two methods on the inputs of
different size. The advantage of the critical set method becomes clearer for larger inputs. Optimization is with
momentum for the diagram method, γ = 0.9. Learning rate is 0.1

Figure 19: Ratio of the diagram losses during the optimization using the two methods on the inputs of different
size: y-axis is the value of the diagram loss when optimized with the diagram method divided by the value of
the diagram loss when optimized with the critical set method. Optimization is with momentum for the diagram
method, γ = 0.9. Learning rate is 0.1.

23



(a) Original HKS function. (b) Simplified (critical set). (c) Simplified (diagram).

Figure 20: Visualization of the Heat Kernel Signature and its simplification.

diagram. The vineyards and diagrams are shown in Figures 21 and 22. Here we find that the best performance
of the diagram method was for a smaller value of γ = 0.5, with γ = 0.9 the optimization diverges and starts
moving points away from the diagonal, as we can see in Figure 23. This highlights a disadvantage of the
diagram loss: to perform well, one needs to tune optimization parameters. The critical set method with
plain gradient descent quickly drives the loss to 0, while the diagram method does not achieve the same
result even after 50 steps, see Figure 24.

Figure 20 shows the results of the simplification. It is hard to tell the difference visually; one can see
that both methods remove topological features by creating similar paths.

The diagram method takes 8.14 seconds. 50 steps of the critical set method take about 21.57 seconds.
However, a fair comparison would be to run the critical set method until it drives the loss below the value
achieved by the diagram method, which happens after 7 steps, after only 2.96 seconds.

24



Figure 21: Vineyard of the optimization guided by the simplification of a superlevel set in a 0-dimensional
diagram of the HKS, using the critical set method. Learning rate is 0.2, without momentum. The color
encodes the time step.

Figure 22: Vineyard of the optimization guided by the simplification of a superlevel set in a 0-dimensional
diagram of the HKS, using the diagram method. Learning rate is 0.2, momentum γ = 0.5. The color encodes
the time step.

Figure 23: Vineyard of the optimization guided by the simplification of a superlevel set in a 0-dimensional
diagram of the HKS, using the diagram method. Learning rate is 0.2, momentum γ = 0.9. The color encodes
the time step. Note that the most persistent points that we wanted to preserve are no longer fixed.

25



Figure 24: Comparison of the diagram losses during simplification of the HKS function. Diagram methods
benefits from momentum, but the critical set significantly outperforms it.

26



Functional map regularization. Let us recall the methodology of the functional map correspondence
method, following the notation used in [26]. We are given two manifolds (triangular meshes) M and N .

First, we choose a set of basis functions, kM and kN , on each manifold. The basis functions are the
eigenfunctions of the corresponding Laplace–Beltrami operator, LM or LN . Then we compute kd descriptors
on each manifold and expand them in the corresponding basis. We stack the column vectors with the
coordinates of each descriptor into two matrices, A and B, of size kM × kd and kN × kd.

More precisely, the chosen basis functions do not span the whole space of functions on the manifold,
unless we decide to use all of the eigenfunctions, because only in this case we have as many functions in
the basis as vertices. Accordingly, by expanding a function in the basis we actually mean expanding its
orthogonal projection on the subspace spanned by the first eigenfunctions.

The idea of a functional map correspondence is that instead of searching for a point-to-point correspon-
dence M → N , we search for a linear mapping from the space of all real-valued functions on M into the
space of all functions on N . Since we fix the bases, such a map is encoded by a matrix C of size kN × kM.
There are two reasonable requirements to impose on C: 1) if the descriptors are invariant under isometry,
C must preserve them, i.e., CA = B and 2) the map should commute with the Laplace–Beltrami operator.
Our basis functions are eigenfunctions of the Laplace–Beltrami operator, therefore we can express the second
requirement as ΛNC = CΛM, where ΛM is the diagonal matrix whose diagonal consists of the first kM
eigenvalues of LM, and ΛN is the diagonal matrices whose diagonal consists of the first kN eigenvalues of
LN .

Thus, we obtain the first approximation of C by solving the optimization problem

C = arg min
X
‖XA−B‖+ ε‖ΛNX−CΛM‖. (6)

In our experiments, we took two meshes form the SCAPE dataset. We choose kM = kN = kd = 80 and
perform L-BFGS to solve Equation (6). The descriptors we chose are HKS function evaluated at different
time values.

The topology comes into play in the second phase of the process. While every bijective continuous
mapping f : M → N gives rise to the corresponding invertible linear map between functional spaces via
pullback (φ : M → R maps to φ ◦ f−1 : N → R), the converse is not true. Let us take r connected
regions on M and let Ωr be the indicator function of the union of the regions. We slightly abuse the
notation by writing C(Ωr) for the corresponding function N → R (first, Ωr needs to be projected onto
the corresponding subspace). The authors of [26] show that it is reasonable to require the following: the
0-dimensional persistence diagram of C(Ωr) has exactly as many points as the diagram of Ωr. In other
words, we should simplify the diagram of C(Ωr) to remove all but the first r−1 most persistent finite points
(we assume N and M to be connected, so there is exactly one point at infinity).

We sample r = 1 random point and take all points of the mesh that are at most 2 hops away as our
region. We want to optimize C to eliminate all finite points in the diagram of the image of the indicator
function C(Ω1). Crucially, unlike the rest of the examples in the paper, the optimization parameters are the
entries of matrix C.

The behavior of the diagram loss is shown in Figure 25. The advantage of the critical set method is
evident, it rapidly drives the loss to 0.

The vineyards are in Figures 26 to 29.
We should mention that these results are for simplification method that pushes the point (b, d) towards

(d, d), i.e., increases the birth values.

27



Figure 25: Comparison of the diagram losses during regularization of the functional map C. Diagram methods
benefits from momentum, but the critical set significantly outperforms it.

Figure 26: Vineyard of the optimization of the functional map C guided by the simplification of a superlevel set
in a 0-dimensional diagram of C(Ω1), using the critical set method. Learning rate is 0.2, without momentum.
The color encodes the time step.

Figure 27: Vineyard of the optimization of the functional map C guided by the simplification of a superlevel set
in a 0-dimensional diagram of C(Ω1), using the diagram method. Learning rate is 0.2, no momentum. The
color encodes the time step.

28



Figure 28: Vineyard of the optimization of the functional map C guided by the simplification of a superlevel set
in a 0-dimensional diagram of C(Ω1), using the diagram method. Learning rate is 0.2, momentum γ = 0.5.
The color encodes the time step.

Figure 29: Vineyard of the optimization of the functional map C guided by the simplification of a superlevel set
in a 0-dimensional diagram of C(Ω1), using the diagram method. Learning rate is 0.2, momentum γ = 0.9.
The color encodes the time step.

29



References

[1] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. Scape:
shape completion and animation of people. In ACM SIGGRAPH 2005 Papers. 2005, pp. 408–416.

[2] Attali, D., Glisse, M., Hornus, S., Lazarus, F., and Morozov, D. Persistence-sensitive sim-
plication of functions on surfaces in linear time. In TopoInVis’ 09 (2009).

[3] Bauer, U. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Journal of Applied and
Computational Topology (2021).

[4] Bauer, U., Kerber, M., Reininghaus, J., and Wagner, H. Phat–persistent homology algorithms
toolbox. Journal of symbolic computation 78 (2017), 76–90.

[5] Bauer, U., Lange, C., and Wardetzky, M. Optimal topological simplification of discrete functions
on surfaces. Discrete & computational geometry 47, 2 (2012), 347–377.

[6] Bendich, P., Edelsbrunner, H., Morozov, D., and Patel, A. Homology and robustness of level
and interlevel sets. Homology, Homotopy and Applications 15, 1 (2013), 51–72.

[7] Brüel-Gabrielsson, R., Nelson, B. J., Dwaraknath, A., Skraba, P., Guibas, L. J., and
Carlsson, G. A topology layer for machine learning. In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS) (2020), pp. 1553–1563.

[8] Carriere, M., Chazal, F., Glisse, M., Ike, Y., Kannan, H., and Umeda, Y. Optimizing
persistent homology based functions. In Proceedings of the 38th International Conference on Machine
Learning (2021), M. Meila and T. Zhang, Eds., vol. 139 of Proceedings of Machine Learning Research,
PMLR, pp. 1294–1303.

[9] Chen, C., and Kerber, M. Persistent homology computation with a twist. In Proceedings 27th
European Workshop on Computational Geometry (2011), vol. 11, pp. 197–200.

[10] Chen, C., Ni, X., Bai, Q., and Wang, Y. A topological regularizer for classifiers via persistent
homology. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AIS-
TATS) (2019), pp. 2573–2582.

[11] Cohen-Steiner, D., Edelsbrunner, H., and Morozov, D. Vines and vineyards by updating
persistence in linear time. In Proceedings of the Annual Symposium on Computational Geometry (2006),
pp. 119–126.

[12] Davis, D., Drusvyatskiy, D., Kakade, S., and Lee, J. D. Stochastic subgradient method con-
verges on tame functions. Foundations of computational mathematics 20, 1 (Feb. 2020), 119–154.

[13] de Silva, V., Morozov, D., and Vejdemo-Johansson, M. Dualities in persistent (co)homology.
Inverse problems 27, 12 (Nov. 2011), 124003.

[14] Edelsbrunner, H., and Harer, J. Computational topology: an introduction. American Mathematical
Society, 2010.

[15] Edelsbrunner, H., and Morozov, D. Persistent homology. In Handbook of Discrete and Computa-
tional Geometry. Chapman and Hall/CRC, 2017, pp. 637–661.

[16] Edelsbrunner, H., Morozov, D., and Pascucci, V. Persistence-sensitive simplification functions
on 2-manifolds. In Proceedings of the Annual Symposium on Computational Geometry (2006), ACM,
pp. 127–134.

[17] Edelsbrunner, H., Morozov, D., and Patel, A. Quantifying transversality by measuring the
robustness of intersections. Foundations of Computational Mathematics 11, 3 (June 2011), 345–361.

30



[18] Gameiro, M., Hiraoka, Y., and Obayashi, I. Continuation of point clouds via persistence diagrams.
Physica D. Nonlinear phenomena 334 (Nov. 2016), 118–132.

[19] Guo, F., Li, H., Daughton, W., and Liu, Y.-H. Formation of hard power laws in the energetic
particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113 (Oct. 2014),
155005.

[20] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.
Discrete & computational geometry 28, 4 (Nov. 2002), 511–533.

[21] Klacansky, P. Open scientific visualization datasets. klacansky.com/open-scivis-datasets/.

[22] Leygonie, J., Carrière, M., Lacombe, T., and Oudot, S. A gradient sampling algorithm for
stratified maps with applications to topological data analysis. arXiv:2109.00530 (2021).

[23] Luo, Y., and Nelson, B. J. Accelerating iterated persistent homology computations with warm
starts. arXiv:2108.05022 (2021).

[24] Morozov, D. Homological illusions of persistence and stability. PhD thesis, Duke University, 2008.

[25] Nigmetov, A., Krishnapriyan, A. S., Sanderson, N., and Morozov, D. Topological regular-
ization via Persistence-Sensitive optimization. arXiv:2011.05290 (Nov. 2020).

[26] Poulenard, A., Skraba, P., and Ovsjanikov, M. Topological function optimization for continuous
shape matching. Computer graphics forum: journal of the European Association for Computer Graphics
37, 5 (Aug. 2018), 13–25.

[27] Rosenberg, D., Pouquet, A., Marino, R., and Mininni, P. D. Evidence for Bolgiano-Obukhov
scaling in rotating stratified turbulence using high-resolution direct numerical simulations. Physics of
fluids 27, 5 (May 2015), 055105.

[28] Solomon, Y., Wagner, A., and Bendich, P. A fast and robust method for global topological
functional optimization. In International Conference on Artificial Intelligence and Statistics (2021),
PMLR, pp. 109–117.

[29] Tierny, J., and Pascucci, V. Generalized topological simplification of scalar fields on surfaces. IEEE
transactions on visualization and computer graphics 18, 12 (Dec. 2012), 2005–2013.

[30] Trailie, C. Pyhks, 2018. github.com/ctralie/pyhks.

31

https://klacansky.com/open-scivis-datasets/
https://github.com/ctralie/pyhks

	Introduction
	Background
	Singleton Loss
	Critical Set
	Increase Death
	Decrease Death
	Increase or Decrease Birth
	Consistency of Critical Sets
	Faces and Cofaces
	Combined Loss

	Experiments
	Sublevel Set Simplification
	Persistence-sensitive Simplification
	Timing and Convergence Rate

	Conclusion
	Different optimizers
	Other conflict strategies
	Scaling experiments
	Experiments with Heat Kernel Signature

